Ανάπτυξη τεχνικών επεξεργασίας γεωραντάρ για την ανάδειξη δομών αρχαιολογικού ενδιαφέροντος

Περίληψη

Η μέθοδος του γεωραντάρ είναι μη καταστροφική και εφαρμόζεται επιτυχώς σε αρχαιολογικές γεωφυσικές διασκοπήσεις για την χαρτογράφηση θαμμένων θεμελίων. Η αρχή λειτουργίας του στηρίζεται στην εκπομπή Η/Μ κυμάτων από κεραία-πομπό τα οποία διαδίδονται στο υπέδαφος με ταχύτητα η οποία επηρεάζεται κυρίως από τις ηλεκτρικές ιδιότητες του μέσου. Όταν εισέλθουν σε μέσο διαφορετικών ηλεκτρικών ιδιοτήτων ένα μέρος ανακλάται προς την επιφάνεια όπου ανιχνεύεται από την κεραία-δέκτη ενώ το υπόλοιπο συνεχίζει τη διάδοση στο νέο μέσο. Στις αρχαιολογικές διασκοπήσεις οι κεραίες πομπός-δέκτης κινούνται ταυτόχρονα έχοντας σταθερή απόσταση μεταξύ τους κατά μήκος μιας γραμμής μελέτης πάνω στην επιφάνεια του εδάφους συλλέγοντας καταγραφές που ονομάζονται ίχνη (traces). Κατά αυτό τον τρόπο προκύπτουν τομογραφικές εικόνες του υπεδάφους. Σε αυτού του είδους εικόνες, τα αρχαία θεμέλια συνήθως αποτυπώνονται με πρότυπα τα οποία έχουν την μορφή πολλαπλών υπερβολών και περιθλάσεων που αναφέρονται ως ανακλάσεις. Η ...
περισσότερα

Περίληψη σε άλλη γλώσσα

GPR data interpretation from archaeological prospection is a tedious and time-consuming process that requires skills and experience. The interpretation process is prone to mistakes, even by the more experienced users. The subsurface can create non-intuitive patterns, making the identification of the buried targets uncertain, requiring additional information from other methods and technologies. Archaeological remains may be bypassed or mistaken for other types of features. Further, residual noise can easily be mistaken as structural remains when in a stripe form that is quite common when surveying in rough terrains. Hence, a system capable of detecting archaeological remains from GPR data could be employed as a guide to assist their interpretation, saving time and reducing mistakes. Recent developments of Deep Learning (DL) and, in particular, Convolutional Neural Networks (CNN) have shown impressive results for similar tasks in other scientific domains like computer vision and medical ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/49630
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/49630
ND
49630
Εναλλακτικός τίτλος
Learning from Ground Penetrating Radar to identify ancient buried structures
Συγγραφέας
Μανατάκη, Μερόπη (Πατρώνυμο: Κωνσταντίνος)
Ημερομηνία
2021
Ίδρυμα
Πολυτεχνείο Κρήτης. Σχολή Μηχανικών Ορυκτών Πόρων
Εξεταστική επιτροπή
Βαφείδης Αντώνιος
Ζερβάκης Μιχαήλ
Σαρρής Απόστολος
Γαλετάκης Μιχαήλ
Παρτσινέβελος Παναγιώτης
Αποστολόπουλος Γεώργιος
Παπαδόπουλος Νικόλαος
Επιστημονικό πεδίο
Επιστήμες Μηχανικού και ΤεχνολογίαΆλλες Επιστήμες Μηχανικού και Τεχνολογίες ➨ Μηχανική και Τεχνολογίες, άλλοι τομείς
Λέξεις-κλειδιά
Γεωραντάρ; Αρχαιολογία; Συνελικτικά νευρωνικά δίκτυα; Ανάλυση δεδομένων; Συλλογή δεδομένων
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)