Περίληψη
Η μοριακή απεικόνιση ορίζεται ως η in-vivo μη επεμβατική απεικόνιση, αξιολόγηση και ποσοτικοποίηση των φυσιολογικών και παθολογικών διεργασιών ενός ζωντανού οργανισμού σε πραγματικό χρόνο. Οι ιχνηθέτες που έχουν αναπτυχθεί τα τελευταία χρόνια για την μοριακή απεικόνιση είναι κατάλληλα σχεδιασμένοι ώστε να στοχεύουν σε συγκεκριμένα μόρια που εκφράζουν τις διεργασίες του οργανισμού σε λειτουργικό και μεταβολικό επίπεδο. Τα δεδομένα που παράγονται από τις μελέτες μοριακής απεικόνισης βοηθούν στην κατανόηση βιολογικών φαινομένων, στην αναγνώριση παθολογικών περιοχών και στην ανάδειξη των παθοφυσιολογικών μηχανισμών των νόσων. Επομένως, η μοριακή απεικόνιση συνεισφέρει σημαντικά όχι μόνο στην πρόγνωση αλλά και στη διάγνωση, στην παρακολούθηση των θεραπευτικών σχημάτων και στην ανακάλυψη νέων φαρμάκων. Σήμερα, υπάρχουν πέντε κύριες μέθοδοι μοριακής απεικόνισης: α) η απεικόνιση μαγνητικού συντονισμού (Magnetic Resonance Imaging –MRI), β) η απεικόνιση αξονικής τομογραφίας (Computed Tomography ...
Η μοριακή απεικόνιση ορίζεται ως η in-vivo μη επεμβατική απεικόνιση, αξιολόγηση και ποσοτικοποίηση των φυσιολογικών και παθολογικών διεργασιών ενός ζωντανού οργανισμού σε πραγματικό χρόνο. Οι ιχνηθέτες που έχουν αναπτυχθεί τα τελευταία χρόνια για την μοριακή απεικόνιση είναι κατάλληλα σχεδιασμένοι ώστε να στοχεύουν σε συγκεκριμένα μόρια που εκφράζουν τις διεργασίες του οργανισμού σε λειτουργικό και μεταβολικό επίπεδο. Τα δεδομένα που παράγονται από τις μελέτες μοριακής απεικόνισης βοηθούν στην κατανόηση βιολογικών φαινομένων, στην αναγνώριση παθολογικών περιοχών και στην ανάδειξη των παθοφυσιολογικών μηχανισμών των νόσων. Επομένως, η μοριακή απεικόνιση συνεισφέρει σημαντικά όχι μόνο στην πρόγνωση αλλά και στη διάγνωση, στην παρακολούθηση των θεραπευτικών σχημάτων και στην ανακάλυψη νέων φαρμάκων. Σήμερα, υπάρχουν πέντε κύριες μέθοδοι μοριακής απεικόνισης: α) η απεικόνιση μαγνητικού συντονισμού (Magnetic Resonance Imaging –MRI), β) η απεικόνιση αξονικής τομογραφίας (Computed Tomography – CT), γ) η υπερηχοτομογραφία (Ultrasound – US), δ) η οπτική απεικόνιση (Optical Imaging) και ε) οι ραδιοϊσοτοπικές απεικονιστικές μέθοδοι υπολογιστικής τομογραφίας μονοφωτονιακής εκπομπής (Single Photon Emission Computed Tomography - SPECT) και τομογραφίας εκπομπής ποζιτρονίων (Positron Emission Tomography - ΡΕΤ). Αναλόγως της βιοχημικής φυσιολογικής ή παθολογικής διεργασίας του οργανισμού που θέλουμε να απεικονίσουμε, επιλέγεται η κατάλληλη απεικονιστική μέθοδος με κατάλληλο ιχνηθέτη, αν και ο συνδυασμός περισσότερων μεθοδολογιών παρέχει συμπληρωματική πληροφορία. Σημαντική θέση στην μοριακή απεικόνιση κατέχουν οι ραδιοϊσοτοπικές μέθοδοι καθώς μαζί με τις οπτικές μεθόδους αποτελούν την αφετηρία αυτής. Τα εμπορικά διαθέσιμα κλινικά SPECT και ΡΕΤ συστήματα όπως και τα υβριδικά συστήματα SPECT/CT και ΡΕΤ/CT ή ΡΕΤ/MRI χρησιμοποιούνται ευρέως στην ογκολογία για τη διάγνωση, σταδιοποίηση και παρακολούθηση της θεραπείας της νόσου, αλλά και για τη διάγνωση άλλων ασθενειών όπως νευρολογικές και καρδιολογικές παθήσεις. Με την εξέλιξη της τεχνολογίας, τα απεικονιστικά συστήματα βελτιώνονται συνεχώς και η τάση που επικρατεί τη τελευταία δεκαετία είναι η ανάπτυξη εξειδικευμένων απεικονιστικών συστημάτων συγκεκριμένων οργάνων, πχ εγκέφαλος, μαστός, καρδιά, προστάτης, τα οποία προσφέρουν πολύ υψηλές επιδόσεις συγκριτικά με τα αντίστοιχα κλινικά που είναι σχεδιασμένα για ένα μεγάλο εύρος εφαρμογών. Τα νέα εξειδικευμένα συστήματα SPECT και ΡΕΤ βασίζονται στους φωτοπολλαπλασιαστές νέας γενιάς (φωτοπολλαπλασιαστές ευαισθησίας θέσης), οι οποίοι έχουν μικρές διαστάσεις, υψηλή χωρική διακριτική ικανότητα και έτσι επιτρέπουν την κατασκευή ανιχνευτών που να απεικονίζουν μόνο το υπο-εξέταση όργανο μειώνοντας την επίδραση της ακτινοβολίας των υπόλοιπων οργάνων. Με αυτό τον τρόπο είναι δυνατή η απεικόνιση δομών σε επίπεδο μερικών χιλιοστών (1-2 mm) σε αντίθεση με τα κλινικά συστήματα των οποίων η χωρική διακριτική ικανότητα είναι της τάξης των 5-8 mm. Εκτός από την κλινική πράξη, τα εξειδικευμένα SPECT και ΡΕΤ συστήματα βρίσκουν ιδιαίτερη εφαρμογή στην απεικόνιση πειραματόζωων, ένα πεδίο που συνήθως αποτελεί το βασικό χώρο καινοτομίας πριν την κλινική μεταφορά.Η παρούσα διδακτορική διατριβή στοχεύει στη σχεδίαση, βελτιστοποίηση και κατασκευή εξειδικευμένων σπινθηρογραφικών συστημάτων για την απεικόνιση πειραματόζωων, τη σπινθηρομαστογραφία και την απεικόνιση του λεμφαδένα. Συγκεκριμένα, αρχικά μελετήθηκε ένα πρότυπο σύστημα σπινθηρομαστογραφίας και ακολούθως κατασκευάστηκαν δύο ολοκληρωμένα συστήματα, το πρώτο για την ολόσωμη απεικόνιση μυών και το δεύτερο για την απεικόνιση των λεμφαδένων με υψηλή ευαισθησία.
περισσότερα
Περίληψη σε άλλη γλώσσα
Molecular imaging allows the real-time depiction, evaluation, and quantification of various biological and pathophysiologic processes in vivo. During the last decades, a number of tracers have been developed in order to target specific molecules and receptors (ligands) involved in biochemical systems under investigation, such as metabolic processes. Data obtained through molecular imaging techniques are useful in the identification of pathological processes and can contribute to a better understanding of biological phenomena and the underlying mechanisms of various diseases. Therefore, molecular imaging has an important role in the diagnosis, prognoss, staging and therapy monitoring of the corresponding patient populations, as well as in drug discovery and development. Currently, five main types of molecular imaging modalities are available: a) magnetic resonance imaging (MRI), b) computed tomography (CT), c) ultrasonography (US), d) optical imaging and e) radioisotopic techniques. Th ...
Molecular imaging allows the real-time depiction, evaluation, and quantification of various biological and pathophysiologic processes in vivo. During the last decades, a number of tracers have been developed in order to target specific molecules and receptors (ligands) involved in biochemical systems under investigation, such as metabolic processes. Data obtained through molecular imaging techniques are useful in the identification of pathological processes and can contribute to a better understanding of biological phenomena and the underlying mechanisms of various diseases. Therefore, molecular imaging has an important role in the diagnosis, prognoss, staging and therapy monitoring of the corresponding patient populations, as well as in drug discovery and development. Currently, five main types of molecular imaging modalities are available: a) magnetic resonance imaging (MRI), b) computed tomography (CT), c) ultrasonography (US), d) optical imaging and e) radioisotopic techniques. The latter include single photon emission computed tomography (SPECT) and positron emission tomography (PET). In general, the selection of the appropriate modality (and tracer) depends on the biochemical processes or pathological conditions under investigation, while the combination of more than one techniques can provide complementary information.Notably, radioisotopic techniques have been widely recognized for their fundamental contribution in the development of the molecular imaging approaches. Nowadays, SPECT and PET have a well-established role in oncology and the field of hybrid systems (SPECT/CT, ΡΕΤ/CT, ΡΕΤ/MRI) is expanding not only in research, but also in the clinical practice for the diagnosis, staging, and therapy monitoring of cancer patients. Although the applications of these hybrid systems are widely related to oncology, other patient populations may also benefit from their implementation, such as those suffering from cardiovascular or neurological disorders. Moreover, recent technological advances, lead to constant improvement of the imaging modalities direct instrumentation towards the development of dedicated imaging systems for specific organs and particularly the brain, breast, heart, and prostate gland. Compared to conventional whole-body imaging, dedicated systems are designed to provide images of high quality and quantification. A new generation of photomultipliers (position sensitive photomultipliers) is used in these systems; Position sensitive photomultopliers have small dimensions and are characterized by significantly better spatial resolution. Therefore, such detectors can collect data only from the organ of interest, minimizing the effect of the adjacent tissues radioactivity. Furthermore, the spatial resolution of the dedicated systems is 1-2 mm, whereas conventional imaging systems offer spatial resolution of 5-8mm. Apart from the clinical practice, dedicated SPECT and PET systems have significant applications for the molecular imaging of animal models and this is field offers the environment for technical innovations before transfer to the clinics. This thesis aims to design, optimize and develop dedicated scintigraphic systems for small animal imaging, as well as for scintimammography and sentinel lymph node mapping in breast cancer. More specifically, initially a dedicated, prototype system for scintimammography was fully studied and followingly two complete systems were developed; the first one for whole-body small animal imaging imaging and the second for high-sensitive lymph node mapping.
περισσότερα