Συμμετρίες διαφορικών εξισώσεων και εφαρμογές στην Σχετικιστική Αστροφυσική

Περίληψη

Σε αυτή την εργασία μελετάμε τους μονοπαραμετρικούς μετασχηματισμούς κάτω από τους οποίους οι διαφορικές εξισώσεις είναι αναλλοίωτες. Ειδικότερα μελετάμε τις σημειακές συμμετρίες Lie και Noether διαφορικών εξισώσεων τάξεως. Αναπτύσσουμε μια γεωμετρική μέθοδο για τον υπολογισμό των συμμετριών η οποία συνδέει τις σημειακές συμμετρίες των διαφορικών εξισώσεων με τις συμμετρίες του χώρου που πραγματοποιείται η κίνηση. Η γεωμετρική μέθοδος εφαρμόζεται σε διάφορα προβλήματα όπως: η κατηγοριοποίηση των συμμετριών Νευτώνειων συστημάτων δύο και τριών διαστάσεων, η γενίκευση του συστήματος Kepler-Ermakov σε καμπύλους χώρους, η σύνδεση των συμμετριών ανάμεσα σε κλασσικά και κβαντικά συστήματα και η αναζήτηση Τύπου ΙΙ κρυφών συμμετριών στην κυματική εξίσωση και στην εξίσωση διάδοσης θερμότητας σε καμπύλους χώρους. Τέλος, η γεωμετρική μέθοδος εφαρμόστηκε σαν γεωμετρικό κριτήριο για την επιλογή διάφορων μοντέλων στις εναλλακτικές θεωρίες βαρύτητας.

Περίληψη σε άλλη γλώσσα

In this thesis, we study the one parameter point transformations which leave invariant the differential equations. In particular we study the Lie and the Noether point symmetries of second order differential equations. We establish a new geometric method which relates the point symmetries of the differential equations with the collineations of the underlying manifold where the motion occurs. This geometric method is applied in order the two and three dimensional Newtonian dynamical systems to be classified in relation to the point symmetries; to generalize the Newtonian Kepler-Ermakov system in Riemannian spaces; to study the symmetries between classical and quantum systems and to investigate the geometric origin of the Type II hidden symmetries for the homogeneous heat equation and for the Laplace equation in Riemannian spaces. At last but not least, we apply this geometric approach in order to determine the dark energy models by use the Noether symmetries as a geometric criterion in ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/35217
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/35217
ND
35217
Εναλλακτικός τίτλος
Symmetries of Differential equations with applications in Relativistic Physics
Συγγραφέας
Παλιαθανάσης, Ανδρόνικος (Πατρώνυμο: Σωτήριος)
Ημερομηνία
2014
Ίδρυμα
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Σχολή Θετικών Επιστημών. Τμήμα Φυσικής. Τομέας Αστροφυσικής, Αστρονομίας και Μηχανικής
Εξεταστική επιτροπή
Τσαμπαρλής Μιχαήλ
Ευθυμιόπουλος Χρήστος
Βασιλάκος Σπυρίδων
Capozziello Salvatore
Kara Abdul
Ιωάννου Πέτρος
Αποστολάτος Θεοχάρης
Επιστημονικό πεδίο
Φυσικές Επιστήμες
Φυσική
Λέξεις-κλειδιά
Συμμετρίες διαφορικών εξισώσεων; Κοσμολογία; Σχετικότητα; Κυματική εξίσωση; Ολοκληρώματα κινήσεως
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
289 σ., πιν.
Ειδικοί όροι χρήσης/διάθεσης
Το έργο παρέχεται υπό τους όρους της δημόσιας άδειας του νομικού προσώπου Creative Commons Corporation:
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)