Τεχνητή νοημοσύνη για παιχνίδια: ανάπτυξη πρακτόρων με χρήση βαθιάς μάθησης

Περίληψη

Η τεχνητή νοημοσύνη εξελίσσεται την τελευταία δεκαετία με ραγδαίο ρυθμό, διεισδύοντας σε ολοένα και περισσότερους επιστημονικούς κλάδους όπως η πληροφορική, η ιατρική, ακόμα και η εκπαίδευση. Η συνεχώς αυξανόμενη εφαρμογή της σε διαφορετικούς τομείς, αναμενόμενα συμβάλλει αφενός στη διαρκή ανάπτυξη σύγχρονων τεχνικών και αλγορίθμων, αφετέρου στον προσδιορισμό επιπλέον απαιτήσεων και στη δημιουργία νέων προκλήσεων για τον ευρύτερο κλάδο της τεχνητής νοημοσύνης. Ένα πεδίο το οποίο παρουσιάζει ιδιαίτερο ενδιαφέρον αφορά την εφαρμογή τέτοιων αλγορίθμων στο πλαίσιο των παιχνιδιών, τα περιβάλλοντα των οποίων προσφέρουν άμεση ανατροφοδότηση και συγχρόνως παρουσιάζουν διαφορετικές δυσκολίες και περιορισμούς. Στόχος της παρούσας διατριβής είναι η ανάπτυξη ευφυών πρακτόρων για ηλεκτρονικά παιχνίδια με τη χρήση τεχνητής νοημοσύνης και τεχνικών μηχανικής μάθησης. Υπό αυτό το πρίσμα, εξετάζονται οι επικρατέστερες επί του παρόντος τεχνικές, προτείνονται αλγόριθμοι και παρουσιάζονται μέθοδοι προκειμέ ...
περισσότερα

Περίληψη σε άλλη γλώσσα

Artificial intelligence has been evolving at a rapid pace in the last decade, being part of many scientific fields such as IT, medicine and even education. Its ever-increasing application in different fields contributes on the one hand to the continuous development of modern techniques and algorithms, on the other hand leads to additional requirements and new challenges for the wider field of artificial intelligence. A field of particular interest concerns the application of such algorithms in the context of games, the environments of which offer immediate feedback and at the same time introduce several difficulties and limitations. The aim of this thesis is the development of intelligent agents for video games using artificial intelligence and machine learning techniques. Under this scope, the currently prevailing techniques are examined and new algorithms and methods are proposed in order to deal with the main appearing challenges. In the first stage of the thesis, the implementation ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/56731
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/56731
ND
56731
Εναλλακτικός τίτλος
Game AI: developing deep learning-based agents
Συγγραφέας
Παπαγιάννης, Αναστάσιος (Πατρώνυμο: Δημήτριος)
Ημερομηνία
2024
Ίδρυμα
Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ). Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών. Εργαστήριο Συστημάτων Τεχνητής Νοημοσύνης και Μάθησης
Εξεταστική επιτροπή
Σταφυλοπάτης Ανδρέας-Γεώργιος
Στάμου Γεώργιος
Τσανάκας Παναγιώτης
Βουλόδημος Αθανάσιος
Ροντογιάννης Αθανάσιος
Καρυδάκης Γεώργιος
Αλεξανδρίδης Γεώργιος
Επιστημονικό πεδίο
Επιστήμες Μηχανικού και ΤεχνολογίαΕπιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ ➨ Υπολογιστές, Υλικό (hardware) και Αρχιτεκτονική
Λέξεις-κλειδιά
Τεχνητή νοημοσύνη; Βαθιά μηχανική μάθηση; Ευφυείς πράκτορες; Νευρωνικά δίκτυα; Γενετικοί αλγόριθμοι; Δενδρική αναζήτηση Μόντε Κάρλο; Τεχνικές κλαδέματος; Ενισχυτική μάθηση; Γεννητική επαύξηση δεδομένων; Ηλεκτρονικά παιχνίδια
Χώρα
Ελλάδα
Γλώσσα
Ελληνικά
Άλλα στοιχεία
εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)