Περίληψη
Το βασικοκυτταρικό καρκίνωμα (ΒΚΚ) ορίζεται ως ένας αργά αναπτυσσόμενος, τοπικά επεκτεινόμενος, κακοήθης επιδερμικός όγκος. Αποτελεί το συχνότερο τύπο καρκίνου του δέρματος, καθώς πάνω από το 70% των περιστατικών σχετίζονται με αυτόν. Μάλιστα, το 90% των βασικοκυτταρικών καρκινωμάτων αφορούν την περιοχή της κεφαλής και του τραχήλου, ενώ το 10% των περιπτώσεων εμφανίζεται στα βλέφαρα, γεγονός που επιβεβαιώνει την σχέση μεταξύ των βασικοκκυταρικών καρκινωμάτων και της έκθεσης στον ήλιο.Η αποτελεσματική θεραπεία του ΒΚΚ της περιοφθαλμικής χώρας επιτυγχάνεται με ποικίλες μεθόδους και εξαρτάται τόσο από τα χαρακτηριστικά του βασικοκυτταρικού καρκινώματος όσο και από τον ίδιο τον ασθενή. Ανάλογα με το μέγεθος, τον τοπογραφικό εντοπισμό του όγκου, την ηλικία και τη γενική κατάσταση της υγείας του ασθενούς, υπάρχει μια μεγάλη ποικιλία από προσεγγίσεις με στόχο την επανόρθωση του βλεφαρικού ελλείματος. Φυσικά, για την αποκατάσταση της λειτουργικής ανατομίας της περικογχικής περιοχής κρίνεται επ ...
Το βασικοκυτταρικό καρκίνωμα (ΒΚΚ) ορίζεται ως ένας αργά αναπτυσσόμενος, τοπικά επεκτεινόμενος, κακοήθης επιδερμικός όγκος. Αποτελεί το συχνότερο τύπο καρκίνου του δέρματος, καθώς πάνω από το 70% των περιστατικών σχετίζονται με αυτόν. Μάλιστα, το 90% των βασικοκυτταρικών καρκινωμάτων αφορούν την περιοχή της κεφαλής και του τραχήλου, ενώ το 10% των περιπτώσεων εμφανίζεται στα βλέφαρα, γεγονός που επιβεβαιώνει την σχέση μεταξύ των βασικοκκυταρικών καρκινωμάτων και της έκθεσης στον ήλιο.Η αποτελεσματική θεραπεία του ΒΚΚ της περιοφθαλμικής χώρας επιτυγχάνεται με ποικίλες μεθόδους και εξαρτάται τόσο από τα χαρακτηριστικά του βασικοκυτταρικού καρκινώματος όσο και από τον ίδιο τον ασθενή. Ανάλογα με το μέγεθος, τον τοπογραφικό εντοπισμό του όγκου, την ηλικία και τη γενική κατάσταση της υγείας του ασθενούς, υπάρχει μια μεγάλη ποικιλία από προσεγγίσεις με στόχο την επανόρθωση του βλεφαρικού ελλείματος. Φυσικά, για την αποκατάσταση της λειτουργικής ανατομίας της περικογχικής περιοχής κρίνεται επιβεβλημένη η κατανόηση των αρχών επιδιόρθωσης των βλεφαρικών όγκων. Η κατάλληλη θεραπεία ενδέχεται να συνίσταται είτε στην χειρουργική εκτομή του όγκου, είτε στην επανόρθωση της βλάβης μέσω μη χειρουργικών διαδικασιών, με τη χρήση μοντέρνων τεχνολογιών όπως την αφαιρετική κρυοθεραπεία και την φωτοδυναμική θεραπεία. Ακόμη, είναι εφικτή η χρήση σύγχρονων φαρμακευτικών σκευασμάτων όπως της κρέμας ιμικουιμόδης 5% αλλά και η χρήση πολλαπλών επεμβάσεων με στόχο την επισκευή των βλεφαρικών ελλειμάτων.12Για την επιλογή της καταλληλότερης θεραπευτικής τεχνικής, είναι απαραίτητη η κατηγοριοποίηση των όγκων σε συγκεκριμένες κατηγορίες ανάλογα με τα χαρακτηριστικά τους και ο ενδελεχής κλινικός έλεγχος του ασθενούς. Η ισορρόπηση των τεχνικών για την αφαίρεση του όγκου, συνδυαστικά με τη λειτουργικότητα της περιοχής που έχει χειρουργηθεί και την κοσμητική επανόρθωση της βλάβης καθιστούν επιτυχημένη τη θεραπευτική προσέγγιση που έχει εφαρμοστεί. Ενώ λοιπόν, υπάρχει πληθώρα επεμβατικών και μη επεμβατικών τεχνικών με στόχο την αποκατάσταση των βασικοκυτταρικών καρκινωμάτων στο βλέφαρο, η εκλογή της καταλληλότερης μεθόδου που θα οδηγήσει στην θεραπεία αποτελεί μια πολύπλοκη διαδικασία. Για το σκοπό αυτό δημιουργήθηκε ένας σύγχρονος, συστηματικοποιημένος αλγόριθμός σχετικά με την αφαίρεση και επανόρθωση των βασικοκυταρικών καρκινωμάτων των βλεφάρων. Συνολικά η μέθοδος επιλογής θα εξαρτηθεί από έναν συνδυασμό παραγόντων όπως το μέγεθος, τη θέση του όγκου, τις αισθητικές προεκτάσεις της κάθε είδους παρέμβασης, τα ιδιαίτερα χαρακτηριστικά του κάθε ασθενούς αλλά και το προσδόκιμο επιβίωσής του, τη διαθεσιμότητα του εξοπλισμού την ιστοπαθολογία της κάθε βλάβης και την εμπειρία του χειρουργού στην εφαρμογή των τεχνικών αυτών. Ένα άλλο πολύ μεγάλο ζήτημα στο βασικοκυτταρικό καρκίνωμα είναι ο έγκαιρος και έγκυρος εντοπισμός του. Αναφερόμενοι στο βασικοκυτταρικό καρκίνωμα ουσιαστικά, γίνεται λόγος για έναν αργά αναπτυσσόμενο, τοπικά επεκτεινόμενο, κακοήθη επιδερμικό όγκο του δέρματος ο οποίος προσβάλλει κυρίως άτομα της καυκάσιας φυλής (Telferetal, 1999). Οι τρόποι με τους οποίους μπορεί να εμφανιστεί το βασικοκυτταρικό καρκίνωμα στον άνθρωπο είναι 8 (οκτώ). Επειδή υπάρχουν τόσες πολλές κατηγορίες βασικοκυτταρικού καρκινώματος, ο εντοπισμός και η κατηγοριοποίηση του βασικοκυτταρικού καρκινώματος, είναι δύσκολη και εξαρτάται από πάρα πολλούς παράγοντες. Για το λόγο αυτό πλέον γίνεται χρήση (όπως και σε πολλούς τομείς της ιατρικής για διάγνωση) για δημιουργία ενός ευφυούς συστήματος τεχνητής νοημοσύνης ώστε να μπορεί να ξεχωρίσει τις περιπτώσεις που κάνει την εμφάνισή του το βασικοκυτταρικό καρκίνωμα, ώστε να ληφθούν τα απαραίτητα μέτρα. 13Στον τομέα της διάγνωσης εδώ και αρκετά χρόνια χρησιμοποιούνται στην ιατρική, όπως και σε άλλες επιστήμες (για τη στήριξη αποφάσεων), συστήματα τεχνητής νοημοσύνης και ευφυή συστήματα τα οποία μπορούν να βοηθήσουν τους ιατρούς στη λήψη αποφάσεων και να επιβεβαιώσουν ή να βοηθήσουν την έγκαιρη και έγκυρη διάγνωση.Οι προσπάθειες που έχουν γίνει στον τομέα της τεχνητής νοημοσύνης είναι αρκετά μεγάλες. Τα παλαιότερα χρόνια γινόταν χρήση συστημάτων τεχνητής νοημοσύνης τα οποία χρειαζόταν να εκπαιδευτούν με επίβλεψη. Δηλαδή, χρειαζόταν κάποιος τεχνικός ή ειδήμων επί του θέματος ώστε να παρακολουθεί την εκπαίδευση του συστήματος τεχνητής νοημοσύνης και να αναπροσδιορίζει την εκπαίδευση όπου χρειάζεται ώστε να μπορούν να παραχθούν τα ανάλογα - σωστά αποτελέσματα.Για τη δημιουργία συστημάτων τεχνητής νοημοσύνης, χρησιμοποιείται ένα μεγάλο εύρος εργαλείων όπως αλγόριθμοι εύρεσης και βελτιστοποίησης, λογική και ασαφής λογική (fuzzy logic), μέθοδοι πιθανοτήτων (Probabilistic methods) καθώς και Νευρωνικά Δίκτυα (Neural Networks) και Νευρωνικά Δίκτυα Βαθιάς Γνώσης (Deep Learning Neural Networks). Στόχος της εργασίας αυτής είναι η ανάπτυξη ευφυούς συστήματος για την αναγνώριση ενός βασικοκυτταρικού καρκινώματος από μια φωτογραφία, ώστε να βοηθήσει στην έγκυρη και έγκαιρη διάγνωση της ύπαρξης βασικοκυτταρικού καρκινώματος τους ιατρούς. Για να επιτευχθεί αυτό χρησιμοποιήθηκαν Νευρωνικά Δίκτυα όπως και Νευρωνικά Δίκτυα Βαθιάς Γνώσης.Για να εκπαιδευτεί ένα Νευρωνικό Δίκτυο χρειάζεται την επίβλεψη ενός ειδικού ο οποίος θα βοηθήσει το Νευρωνικό Δίκτυο να πάρει τις σωστές αποφάσεις ώστε με δεδομένο μια είσοδο (μια φωτογραφία για παράδειγμα) να παράγει την κατάλληλη έξοδο (το αποτέλεσμα ότι υπάρχει ή δεν υπάρχει παθογένεια για παράδειγμα). Το πρόβλημα με αυτό τον τύπο δικτύου είναι ότι εξαρτάται σε πολύ μεγάλο βαθμό από 14την καταλληλότητα του ατόμου που θα είναι υπεύθυνο για την εκπαίδευσή του και το γεγονός ότι μπορεί να μην είναι αμερόληπτο και αντικειμενικό αυτό το άτομο (ανθρώπινος παράγοντας). Υπό κάποιες συνθήκες μπορεί να εκπαιδευτεί αυτόματα και αυτόνομα το Νευρωνικό Δίκτυο, αλλά υπάρχουν πολλές πιθανότητες να οδηγηθεί σε λάθος προβλέψεις και συμπεράσματα.Για να εκπαιδευτεί ένα Νευρωνικό Δίκτυο Βαθιάς Γνώσης δεν απαιτείται η επίβλεψη από κάποιον ειδικό. Το μόνο που χρειάζεται είναι μεγάλο αριθμό δειγμάτων για είσοδο (φωτογραφίες για παράδειγμα). Από εκεί και πέρα οργανώνεται σε πολλά επίπεδα τα οποία με κατάλληλο συνδυασμό πράξεων και υπολογισμών καταλήγουν στο αναμενόμενο αποτέλεσμα. Η μεγάλη δυσκολία στα Νευρωνικά Δίκτυα Βαθιάς Γνώσης είναι η εύρεση του μεγάλου πλήθους δειγμάτων όπως και η απομόνωση εξωτερικών παραγόντων που μπορούν να αλλοιώσουν το αποτέλεσμα (όπως οι πληροφορίες του υποβάθρου ή άσχετων στοιχείων πέραν του προσώπου για παράδειγμα).Στην εργασία αυτή χρησιμοποιήθηκαν τόσο Νευρωνικά Δίκτυα όσο και Νευρωνικά Δίκτυα Βαθιάς Γνώσης και γίνεται και σύγκριση των αποτελεσμάτων που παράγουν αυτά όπως επίσης και του τρόπου που λειτουργούν καθώς και του χρόνου που απαιτείται για να εκπαιδευτούν.15
περισσότερα
Περίληψη σε άλλη γλώσσα
The Basal Cell Carcinoma (BCC) is known to be a slowly growing, locally expanding, malicious epidermal tumor (Telfer et al, 1999). It constitutes the most common epidermal cancer. It is mostly caused due to the exposition to the Sun. On the field of curing this kind of cancer, there are a lot of types of treating the tumor. It usually is necessary that the tumor to be removed surgically. Besides that, there are some treatments that could take place, like cryotherapy, photodynamic therapy, or even with medicines (Slade et al, 1998), but in order to choose the best method, according to the type of BCC, there are some tests to be done and some cosiderations regarding the age, clinical condition of the BCC and other characteristics of the patient, so that the right method is chosen.The first step of curing a tumor is to identify it in the early stages of its evolution. In this direction there is a lot of effort that has been done on developing an Intelligent System using Neural Networks, t ...
The Basal Cell Carcinoma (BCC) is known to be a slowly growing, locally expanding, malicious epidermal tumor (Telfer et al, 1999). It constitutes the most common epidermal cancer. It is mostly caused due to the exposition to the Sun. On the field of curing this kind of cancer, there are a lot of types of treating the tumor. It usually is necessary that the tumor to be removed surgically. Besides that, there are some treatments that could take place, like cryotherapy, photodynamic therapy, or even with medicines (Slade et al, 1998), but in order to choose the best method, according to the type of BCC, there are some tests to be done and some cosiderations regarding the age, clinical condition of the BCC and other characteristics of the patient, so that the right method is chosen.The first step of curing a tumor is to identify it in the early stages of its evolution. In this direction there is a lot of effort that has been done on developing an Intelligent System using Neural Networks, that could identify a BCC even in the early stages.This is the subject of this project. With this project, a Deep Learning Neural Network has been developed using Matlab, with which (Neural Network), given a picture of a person, the Neural Network can decide and help the doctor's decision about whether the person has BCC or not. The only thing that this software needs is a photo of the person's face with either one of the person's eyes or both of them.In order for the Deep Learning Neural Network to be trained, it has to be given a number of pictures with both pathogenic pictures with faces of persons and pictures of non - pathogenic faces of persons. After the training period, the Neural Network will have its weights calculated. This is necessary, so that the Neural Network can conclude if a photo with a person's face can be considered as pathogenic or not. Parallel to the Deep Neural Network, a Shallow Neural Network was developed and the accuracies were compared. It turns out that the Deep Neural Network can achieve 16better results in terms of the accuracy with which a face of a person (on a photo) can be evaluated to have pathogen or not. Actually, the usual accuracy of the Deep Neural Network is over 80% in evaluating the pathogen in a picture of a person's face. On the other hand, the Shallow Neural Network can achieve evaluation accuracy on the level of about 60% only! This project achieves two things:• Confirms the theory on Deep Neural Networks and Shallow Neural Networks.• Can be a useful tool on helping doctor's decision whether a person has BCC or not
περισσότερα