Αριθμητική ανάλυση στοχαστικών διαφορικών εξισώσεων με εφαρμογές στα χρηματοοικονομικά μαθηματικά και στις μοριακές δυναμικές
Περίληψη
Σε αυτή τη διατριβή αντικείμενο έρευνας είναι η αριθμητική επίλυση στοχαστι- κών διαφορικών εξισώσεων (ΣΔΕ), οι οποίες έχουν λύση σε ένα συγκεκριμένο χωρίο. Ο στόχος μας ειναι η κατασκευή άμεσων αριθμητικών σχημάτων τα οποία διατηρούν αυτό το χωρίο, κυρίως σε περιπτώσεις όπου οι συντελεστές των ΣΔΕ είναι μη-γραμμικοί. Είναι γνωστό ότι το με βήμα προς τα εμπρός σχήμα Euler αποκλίνει σε υπερ- γραμμικά προβλήματα και η ελεγχόμενη μέθοδος Euler δε διατηρεί απαραίτητα τη δομή του αρχικού προβλήματος. Προτείνουμε ένα νέο αριθμητικό σχήμα, χρησιμοποιώντας την Ημι-Διακριτή μέθοδο, για διάφορες κλάσεις στοχαστικών διαφορικών εξισώσεων. Για κάποια υπεργραμμικά προβλήματα (όπως το Heston 3/2-μοντέλο) καθώς και για υπο- γραμμικά (όπως το CEV μοντέλο), τα οποία εμφανίζονται στο πεδίο των χρημα- τοοικονομικών μαθηματικών, κατασκευάζουμε ένα αριθμητικό σχήμα το οποίο διατηρεί τη θετικότητα. Παραπέρα, εφαρμόζουμε τη μέθοδο μας σε προβλήματα τα οποία εμφανίζονται στο πεδίο των μοριακών δυναμικών, όπου ...
περισσότερα
Περίληψη σε άλλη γλώσσα
In this thesis we are interested in the numerical solution of stochastic differential equations (SDE) with solutions in a certain domain. Our goal is to construct explicit numerical schemes that preserve that domain, mainly for cases where the coefficients of the SDEs are non-linear. It is well known that the forward Euler scheme diverges on super-linear problems and the tamed Euler method does not necessarily preserve the structure of the original problem. We propose a new numerical scheme, using the semi-discrete method, for various classes of stochastic differential equations. For some super-linear problems (like the Heston 3/2-model) as well as sub-linear (like the CEV model), which appear in the field of financial mathematics, we are able to construct a positivity preserving scheme. Moreover, we apply our method to problems arising in the field of molecular dynamics, where our structure preserving scheme is able to approximate effectively some SDEs which appear after a coarse grai ...
περισσότερα
Κατεβάστε τη διατριβή σε μορφή PDF (3.33 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.