Περίληψη
Η παρούσα έρευνα πραγματοποιήθηκε στο Εργαστήριο Ρευστομηχανικής και Εφαρμογών Αυτής του Τμήματος Μηχανολόγων και Αεροναυπηγών Μηχανικών του Πανεπιστημίου Πατρών και χρηματοδοτήθηκε από το πρόγραμμα «Ηράκλειτος ΙΙ» στα πλαίσια του Επιχειρησιακού Προγράμματος Εκπαίδευση και Δια Βίου Μάθησης, Επένδυση στη κοινωνία της γνώσης.Ο έλεγχος του θερμικού φορτίου στη λειτουργία διαφόρων μηχανολογικών ή ηλεκτρολογικών συστημάτων από συστήματα ψύξης, γίνεται όλο και πιο αναγκαίος στη σημερινή εποχή. Τα συστήματα ψύξης κατηγοριοποιούνται σε ενεργά, που μεταφέρουν ενέργεια υπό μορφή αισθητής θερμότητας μέσω ενός υγρού και σε παθητικά συστήματα ψύξης που χρησιμοποιούν τη λανθάνουσα θερμότητα εξάτμισης του ρευστού λειτουργίας που κυκλοφορεί στην εγκατάσταση, εξαιτίας των τριχοειδών δυνάμεων που αναπτύσσονται από την ύπαρξη πορώδους υλικού. Τα παθητικά συστήματα ψύξης προτιμώνται έναντι των ενεργών, καθώς έχουν τη δυνατότητα να απάγουν περισσότερη θερμότητα, παρουσιάζουν πιο αξιόπιστη λειτουργία, εξαιτ ...
Η παρούσα έρευνα πραγματοποιήθηκε στο Εργαστήριο Ρευστομηχανικής και Εφαρμογών Αυτής του Τμήματος Μηχανολόγων και Αεροναυπηγών Μηχανικών του Πανεπιστημίου Πατρών και χρηματοδοτήθηκε από το πρόγραμμα «Ηράκλειτος ΙΙ» στα πλαίσια του Επιχειρησιακού Προγράμματος Εκπαίδευση και Δια Βίου Μάθησης, Επένδυση στη κοινωνία της γνώσης.Ο έλεγχος του θερμικού φορτίου στη λειτουργία διαφόρων μηχανολογικών ή ηλεκτρολογικών συστημάτων από συστήματα ψύξης, γίνεται όλο και πιο αναγκαίος στη σημερινή εποχή. Τα συστήματα ψύξης κατηγοριοποιούνται σε ενεργά, που μεταφέρουν ενέργεια υπό μορφή αισθητής θερμότητας μέσω ενός υγρού και σε παθητικά συστήματα ψύξης που χρησιμοποιούν τη λανθάνουσα θερμότητα εξάτμισης του ρευστού λειτουργίας που κυκλοφορεί στην εγκατάσταση, εξαιτίας των τριχοειδών δυνάμεων που αναπτύσσονται από την ύπαρξη πορώδους υλικού. Τα παθητικά συστήματα ψύξης προτιμώνται έναντι των ενεργών, καθώς έχουν τη δυνατότητα να απάγουν περισσότερη θερμότητα, παρουσιάζουν πιο αξιόπιστη λειτουργία, εξαιτίας της έλλειψης κινητών μερών και τέλος, εμφανίζουν μεγαλύτερη διάρκεια ζωής. Μία διάταξη που προσφέρει δυνατότητες ελέγχου του θερμικού φορτίου είναι το κύκλωμα τριχοειδούς αντλίας, Capillary Pump Loop (CPL), που αποτέλεσε και το αντικείμενο μελέτης στην παρούσα διδακτορική διατριβή. Αξιοποιεί τις τριχοειδείς δυνάμεις που αναπτύσσονται στη διεπιφάνεια υγρής-αέριας φάσης του ρευστού λειτουργίας στο πορώδες υλικό που περικλείει ο εξατμιστής στο εσωτερικό του, καθώς και τη λανθάνουσα θερμότητα εξάτμισης και συμπύκνωσης του ρευστού. Με τον τρόπο αυτό, επιτυγχάνει την κυκλοφορία του ρευστού λειτουργίας στην εγκατάσταση, χωρίς την παρουσία μηχανικής αντλίας, και τη μεταφορά των απαιτούμενων θερμικών φορτίων σε μεγάλες αποστάσεις. Ένα κύκλωμα τριχοειδούς αντλίας αποτελείται από έναν εξατμιστή, ένα συμπυκνωτή, τις γραμμές υγρού και ατμού καθώς και ένα ρεζερβουάρ. Από τη μέχρι τώρα έρευνα είχαν μελετηθεί πειραματικά αρκετά μοντέλα CPL, δίνοντας ιδιαίτερη έμφαση στη διαδικασία εκκίνησης της διάταξης καθώς και στις συνθήκες μόνιμης λειτουργίας. Σε όλα αυτά τα μοντέλα το θερμικό φορτίο επιβάλλονταν μέσω ηλεκτρικών αντιστάσεων. Στην παρούσα διερεύνηση η διάταξη ενσωμάτωσε τη δυνατότητα η προσφερόμενη θερμότητα να παρέχεται και από την ηλιακή ακτινοβολία αναπτύσσοντας έναν εργαστηριακό ηλιακό προσομοιωτή. Προκειμένου να βελτιώσουμε τη συγκέντρωση της ακτινοβολίας και να επιτύχουμε υψηλότερη θερμοκρασία στον εξατμιστή του CPL χρησιμοποιήθηκε παραβολικό κάτοπτρο σε συνδυασμό με συγκεντρωτικό συλλέκτη.Η πειραματική εγκατάσταση που σχεδιάσθηκε και κατασκευάστηκε είχε ως στόχο τη μελέτη της συμπεριφοράς του CPL σε θερμικά φορτία υπό μεταβλητές συνθήκες πλήρωσης της εγκατάστασης, ενώ εξετάστηκε και η συμπεριφορά της τριχοειδούς αντλίας όταν ο εξατμιστής βρίσκονταν υπό κλίση ως προς το επίπεδο, και έγινε σύγκριση των πειραματικών αποτελεσμάτων που προέκυψαν με τα αντίστοιχα για λειτουργία σε οριζόντιο επίπεδο. Η παραμετροποίηση της πειραματικής διερεύνησης του CPL αφορούσε τέσσερις τιμές θερμοκρασίας εισόδου του ρευστού, 15, 25, 35 και 45 οC, τρεις τιμές πίεσης πλήρωσης του κυκλώματος, 0,05, 0,15 και 0,25 bar, και, τέλος, τρεις γωνίες κλίσης, 8ο, 16ο και 23ο. Η διάρκεια των πειραμάτων ήταν αρχικά δέκα ώρες, ώστε να προσομοιώνει τη λειτουργία της εγκατάστασης σε διάστημα ηλιοφάνειας κατά τη διάρκεια της καλοκαιρινής περιόδου, αλλά και εικοσιτέσσερις, ώστε να αποτυπωθεί η απρόσκοπτη διατήρηση της κατάστασης σταθερής λειτουργίας του κυκλώματος.Στο δεύτερο μέρος της διατριβής παρουσιάζονται τα υπολογιστικά μοντέλα δύο και τριών διαστάσεων, 2Δ και 3Δ, όπως σχεδιάστηκαν στο λογισμικό GAMBIT της Fluent Inc., βάση των διαστάσεων του εξατμιστή της πειραματικής εγκατάστασης.Τα αποτελέσματα της διερεύνησης που πραγματοποιήθηκε αφορούσαν το νερό, την ακετόνη, την αμμωνία σαν ρευστά λειτουργίας, τόσο στο επίπεδο όσο και υπό γωνίες κλίσης, παραμετροποιώντας τόσο το θερμαινόμενο μήκος πορώδους επί του συνολικού μήκους του πορώδους του εξατμιστή, όσο και τη θερμοκρασία κορεσμού.Τα δεδομένα για όλα τα ρευστά συγκεντρώθηκαν σε συγκριτικά διαγράμματα, ώστε να εξαχθούν συμπεράσματα για τα περιθώρια αξιοποίησης αυτών, είτε υπάρχει κλίση είτε όχι. Επιπλέον, τεκμηριώθηκε η επιλογή του νερού σαν καταλληλότερο ρευστό λειτουργίας κάτω από δεδομένες συνθήκες.Στο τρίτο μέρος παρουσιάζεται ο αριθμητικός κώδικας που δημιουργήθηκε για τη μοντελοποίηση ολόκληρης της εγκατάστασης του CPL και παραθέτουμε συγκριτικά διαγράμματα, για τις ίδιες συνθήκες λειτουργίας, με τα πειραματικά, τα αριθμητικά και τα υπολογιστικά αποτελέσματα.Στο τελευταίο μέρος έχουμε σχεδιάσει κυκλώματα, αξιοποιώντας την τριχοειδή αντλία, για τη ψύξη/θέρμανση των χώρων μιας κατοικίας για ολόκληρο το έτος. Μια πρόταση που βασίζεται στην αξιοποίηση της ηλιακής ενέργειας και ανταποκρίνεται στην επιτακτική ανάγκη για εκμετάλλευση των ανανεώσιμων πηγών ενέργειας και τη μείωση της χρήσης ηλεκτρικής ενέργειας, εξοικονομώντας χρήματα και προστατεύοντας το περιβάλλον
περισσότερα
Περίληψη σε άλλη γλώσσα
Present research was conducted in Fluid Mechanics Laboratory of the Mechanical Engineering and Aeronautics Department, University of Patras, and was financed by the operational programme «Herakleitos II», Education and Lifelong Learning Investing in knowledge society.Modern demands in controlling heating load of the cooling systems of mechanical or electrical components are increasing. Cooling systems are divided in active and passive systems. In active systems energy is transported due to sensual heat. While in passive systems due to working fluid latent heat of evaporation because of capillary forces developed in the porous wick inside the evaporator. Passive systems are preferred compared to active systems because they can transfer larger amount of heat, are more reliable, since there are no moving parts, and, finally, lifetime period is longer.The Capillary Pumped Loop (CPL) is a device proper for thermal management control, and was investigated in the present PhD study. The CPL op ...
Present research was conducted in Fluid Mechanics Laboratory of the Mechanical Engineering and Aeronautics Department, University of Patras, and was financed by the operational programme «Herakleitos II», Education and Lifelong Learning Investing in knowledge society.Modern demands in controlling heating load of the cooling systems of mechanical or electrical components are increasing. Cooling systems are divided in active and passive systems. In active systems energy is transported due to sensual heat. While in passive systems due to working fluid latent heat of evaporation because of capillary forces developed in the porous wick inside the evaporator. Passive systems are preferred compared to active systems because they can transfer larger amount of heat, are more reliable, since there are no moving parts, and, finally, lifetime period is longer.The Capillary Pumped Loop (CPL) is a device proper for thermal management control, and was investigated in the present PhD study. The CPL operating principle is based on capillary action, developed in the liquid-vapor phase interface of the working liquid in the porous wick inside the evaporator, and working fluid evaporation and condensation latent heat. The result is that the working fluid is displaced inside the loop without any mechanical pump and heat load is transported in large distances. CPL main components are an evaporator, a condenser, a liquid line, a vapor line and a reservoir.Research regarding the CPL experimental models so far concentrated in the evaporator start-up and steady working state conditions. For all those cases heat load was applied through electric resistances. In the present study heat load was alternatively applied through solar radiation using a solar simulator, designed for this purpose. In order to achieve higher temperature in the evaporator external wall and increase solar radiation exploited, a parabolic mirror was used in combination with a solar collector. The experimental installation was designed in such a way to study the behavior of a CPL when heat load was imposed under different loop charging pressures and for several evaporator inclination angles. Experimental results where compared to the results acquired for evaporator operating at zero inclination angle. The initial values of the working fluid temperature were 15, 25, 35 and 45 oC, of the charging pressure 0,05, 0,15, 0,25 bar and of the inclination angle 8, 16 and 23o. The duration of the experiments was initially ten hours, in order to simulate CPL operating during a typical summer day, and then increased to twenty four hours to investigate continuous operation during all day. In the second section of this study two and three dimensions, 2D and 3D, computational models are presented designed in Gambit, Fluent Inc., based on the exact dimensions of the experimental ones.Computational results were derived for water, acetone and ammonia, as working fluid, for zero inclination and the three values of angles mentioned above. Models were customized for different porous wick heated length and working liquid of different saturation temperature.Comparative figures for all working fluids are presented whether evaporator was under inclination angle or not. Moreover, those comparative figures reviled that water was more suitable as working fluid under steady operating state. In the third section the numerical model simulating the overall CPL function is presented and comparative figures between experimental, computational and numerical results are given, for the same operating conditions.In the last section a potential solar CPL heating/cooling system for domestic use is presented. This potential system could meet the demands for using renewable energy sources in order to reduce electrical energy consumption, save money and protect the environment at the same time.
περισσότερα