Επεκτάσεις της Θεωρίας Perron-Frobenius
Περίληψη
Από το 1907, ο Oskar Perron απέδειξε ένα θεώρημα για θετικούς πίνακες, το οποίο επεκτάθηκε από τον Georg Frobenius το 1912 για μη αναγώγιμους μη αρνητικούς πίνακες. Στη συνέχεια αναπτύχθηκε η γνωστή θεωρία Perron-Frobenius για μη αρνητικούς πίνακες. ́Ενας Mv-πίνακας γράφεται στην μορφή A=sI−B, όπου 0≤ρ(B)≤s και B είναι τελικά μη αρνητικός πίνακας. Ενας GM-πίνακας γράφεται στην μορφή A=sI−B, όπου οι B και B^T έχουν την ιδιότητα Perron-Frobenius (Perron-Frobenius property). Αυτές οι κλάσεις πινάκων είναι επεκτάσεις των γνωστών M-πινάκων. Στην διδακτορική διατριβή, διατυπώνουμε αρχικά τους ορισμούς και τα θεωρήματα που χρειάζονται για να γίνει κατανοητή η Θεωρία Perron-Frobenius σε σχέση και με τις επεκτάσεις των M-πινάκων. Στην συνέχεια, στο κεφάλαιο 2, μελετούμε τους Mv-πίνακες σε σχέση με τη Θεωρία Perron-Frobenius. Ειδικότερα, δίνουμε και αποδεικνύουμε ικανές και αναγκαίες συνθήκες τέτοιες ώστε ένας Mv-πίνακας να έχει θετικό αριστερό και δεξιό ιδιοδιάνυσμα που αντιστοιχεί στην απόλυτ ...
περισσότερα
Περίληψη σε άλλη γλώσσα
The foundations of what today is called Perron-Frobenius theory were laid by Oscar Perron in 1907 with a result on positive matrices and Georg Frobenius in 1912, who extended that result to the case of irreducible nonnegative matrices. An Mv-matrix is a matrix of the form A=sI−B, where 0≤ρ(B)≤s and B is an eventually nonnegative matrix. A GM-matrix denotes a matrix of the form A=sI−B, when both B and B^T possess the Perron-Frobenius property. These classes of matrices are extensions of the well-known M-matrices. In this thesis, we first provide all the definitions and theorems that are necessary to understand the Perron-Frobenius theory and extensions of M-matrices. We then study, in chapter 2, the Mv-matrices concerning the Perron-Frobenius theory. Specifically, sufficient and necessary conditions for an Mv-matrix to have positive left and right eigenvectors corresponding to its eigenvalue with smallest real part without considering or not if (index_0 B)≤1 are stated and proven. Moreo ...
περισσότερα
Κατεβάστε τη διατριβή σε μορφή PDF (694.9 kB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.