Appraisal of the self-organization and evolutionary dynamics of seismicity based on (non-extensive) statistical physics and complexity science methods
Abstract
A fundamental challenge in many scientific fields is to define norms and laws of higherorder in relation to the existing knowledge about phenomena of lower-order. It has been long suggested that the active tectonic grain comprises a self-organized complex system, therefore its expression (seismicity) should be manifested in the temporal and spatial statistics of energy release rates, and exhibit memory due to long-range interactions in a fractal-like space-time. Such attributes can be properly understood in terms of NonExtensive Statistical Physics (NESP) In addition to energy release rates expressed by the magnitude M, measures of the temporal and spatial interactions are the time (Δt) and hypocentral distance (Δd) between consecutive events. Recent work indicated that if the distributions of M, Δt and Δd are independent so that the joint probability p(M, Δt, Δd) factorizes into the probabilities of M, Δt and Δd, i.e. p(MUΔtUΔd) = p(M) p(Δt) p(Δd), then the frequency of earthquake occ ...
show more
![]() | |
![]() | Download full text in PDF format (18.71 MB)
(Available only to registered users)
|
All items in National Archive of Phd theses are protected by copyright.
|
Usage statistics

VIEWS
Concern the unique Ph.D. Thesis' views for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.

ONLINE READER
Concern the online reader's opening for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.

DOWNLOADS
Concern all downloads of this Ph.D. Thesis' digital file.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.

USERS
Concern all registered users of National Archive of Ph.D. Theses who have interacted with this Ph.D. Thesis. Mostly, it concerns downloads.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.