Περίληψη
Η επιστήμη έχει σημαντικά επιτεύγματα μέσω της Νανοτεχνολογίας, με εφαρμογές οι οποίες ξεπερνούν κατά πολύ τις δυνατότητες των συμβατικών μέσων σε πολλά επιστημονικά πεδία, συμπεριλαμβανομένης της Ιατρικής και της Φαρμακευτικής. Η Νανοϊατρική ευδοκιμεί μετά την ανάπτυξη των πρώτων νανοτεχνολογικών φαρμάκων στα τέλη του 20ου αιώνα και αναπτύχθηκε ώστε να αποτελεί μία από τις πιο υποσχόμενες προσπάθειες στον αγώνα κατά των ανθρωπίνων ασθενειών. Σε αυτό το πλαίσιο, τα λιποσώματα από καιρού αξιοποιούνται ως νανοτεχνολογικοί φορείς φαρμακομορίων και θεωρούνται ως μία από τις πιο καλώς μελετημένες πλατφόρμες για αυτόν τον σκοπό. Αυτοί οι νανοφορείς ομοιάζουν με τα κύτταρα και χαρακτηρίζονται από δομή και ιδιότητες στη μεσοκλίμακα τα οποία είναι δυναμικά, κυριαρχούμενα από το μηχανισμό και τους νόμους που διέπουν την αυτο-συναρμολόγηση. Η διαδικασία αυτή φέρει κρίσιμη σημασία για την ανάπτυξη νέων και καινοτόμων φαρμακευτικών προϊόντων, όπως και για τη νομοθετική ρύθμιση των ακολούθων “νανο-ο ...
Η επιστήμη έχει σημαντικά επιτεύγματα μέσω της Νανοτεχνολογίας, με εφαρμογές οι οποίες ξεπερνούν κατά πολύ τις δυνατότητες των συμβατικών μέσων σε πολλά επιστημονικά πεδία, συμπεριλαμβανομένης της Ιατρικής και της Φαρμακευτικής. Η Νανοϊατρική ευδοκιμεί μετά την ανάπτυξη των πρώτων νανοτεχνολογικών φαρμάκων στα τέλη του 20ου αιώνα και αναπτύχθηκε ώστε να αποτελεί μία από τις πιο υποσχόμενες προσπάθειες στον αγώνα κατά των ανθρωπίνων ασθενειών. Σε αυτό το πλαίσιο, τα λιποσώματα από καιρού αξιοποιούνται ως νανοτεχνολογικοί φορείς φαρμακομορίων και θεωρούνται ως μία από τις πιο καλώς μελετημένες πλατφόρμες για αυτόν τον σκοπό. Αυτοί οι νανοφορείς ομοιάζουν με τα κύτταρα και χαρακτηρίζονται από δομή και ιδιότητες στη μεσοκλίμακα τα οποία είναι δυναμικά, κυριαρχούμενα από το μηχανισμό και τους νόμους που διέπουν την αυτο-συναρμολόγηση. Η διαδικασία αυτή φέρει κρίσιμη σημασία για την ανάπτυξη νέων και καινοτόμων φαρμακευτικών προϊόντων, όπως και για τη νομοθετική ρύθμιση των ακολούθων “νανο-ομοειδών” φαρμάκων.Η παρούσα διδακτορική διατριβή πραγματεύεται το σύγχρονο θέμα των αποκρινόμενων σε ερεθίσματα χιμαιρικών/μικτών νανοφορέων για τη θεραπεία του καρκίνου, οι οποίοι ανήκουν στην τάξη των καινοτόμων νανοσυστημάτων μεταφοράς φαρμακομορίων για πολύπλοκες ασθένειες. Σκοπός της έρευνας ήταν ο ορθολογικός σχεδιασμός και η ανάπτυξη χιμαιρικών νανοσυστημάτων, οι οποίοι θα αποκρίνονται σε συγκεκριμένες φυσικές και φυσιολογικές συνθήκες, όπως αλλαγές στη θερμοκρασία και μεταβολές του pH, αλλά και η αξιολόγηση της συμπεριφοράς τους κατά την αυτο-συναρμολόγηση, των τελικών ιδιοτήτων τους και της in vitro και in vivo δράσης τους. Αυτά τα νανοσυστήματα αποτελούνται από δύο διαφορετικές τάξεις βιοϋλικών, ήτοι φωσφολιπίδια και αμφίφιλα δισυσταδικά συμπολυμερή και είναι υποσχόμενοι φαρμακοφορείς για τη θεραπεία διαφόρων τύπων καρκίνου, μεταφέροντας και απελευθερώνοντας θεραπευτικούς παράγοντες επιλεκτικά στο σημείο της νόσου.Τα αναλυτικά εργαλεία τα οποία χρησιμοποιήθηκαν για την αξιολόγηση των αλληλεπιδράσεων μεταξύ των βιοϋλικών και της αυτο-συναρμολογήσεώς τους συνεισφέρουν στην ανάπτυξη ποιοτικών νανοτεχνολογικών σκευασμάτων, προσφέροντας γνώση επί των ιδιοτήτων στη νανοκλίμακα αυτών των συστημάτων και της σχέσεις τους με τον τελικό νανοφορέα. Τα εργαλεία αυτά σχετίζονται με τη θερμοδυναμική, τις φυσικοχημικές ιδιότητες, τη σταθερότητα, τη μορφολογία, τη βιοφυσική και τη λειτουργικότητα και τελικώς, με τη βιολογική τοξικότητα και αποτελεσματικότητα των χιμαιρικών νανοσυστημάτων. Συγκεκριμένα, αυτά περιλαμβάνουν τη θερμική ανάλυση, όπως είναι η διαφορική θερμιδομετρία σαρώσεως (differential scanning calorimetry, DSC) ή η micro-DSC, τη σκέδαση φωτός, τεχνικές απεικονίσεως, όπως είναι η ηλεκτρονική μικροσκοπία διαπερατότητας (transmission electron microscopy, TEM) και η κρυογονική ηλεκτρονική μικροσκοπία μεταδόσεως διαπερατότητας (cryogenic TEM, cryo-TEM) και τέλος, βιολογικές δοκιμασίες, μέσω in vitro και in vivo μοντέλων. Ο πλήρης χαρακτηρισμός ενός νανοσυστήματος, όπως τα λιποσώματα, βάσει των εργαλείων αυτών, όχι μόνο συνδράμει στην ανάπτυξη καινοτόμων νανοσυστημάτων μεταφοράς φαρμακομορίων, αλλά και στην κατανόηση του ρόλου του κάθε μοριακού συστατικού του συστήματος και της διαδικασίας της αυτo-οργανώσεως στο τελικό φαρμακευτικό προϊόν.Τελικώς, η παρούσα διδακτορική έρευνα οδήγησε στην ανάπτυξη βιοσυμβατών και λειτουργικών χιμαιρικών νανοσυστημάτων, τα οποία είναι υποσχόμενα ως πλατφόρμες μεταφοράς φαρμακομορίων για καρκίνο, μέσω της αποκρινόμενης σε ερεθίσματα συμπεριφοράς τους. Η αξία της εγκαθιδρύσεως μιας λογικής για την αξιολόγηση των νανοσυστημάτων τέτοιου τύπου μέσω του συνδυασμού συγκεκριμένων και σημαντικών εργαλείων είναι επίσης εμφανής και θα προσφέρει γνώση για την περαιτέρω ανάπτυξη καινοτόμων φαρμάκων. Επιπλέον, θα συνδράμει και στη μελέτη και έγκριση των ακολούθων προϊόντων αυτών, τα οποία είναι γνωστά ως “νανο-ομοειδοί”. Τα εργαλεία αυτά αφορούν την αξιολόγηση του μηχανισμού της αυτο-συναρμολογήσεως και της σχέσης της με τις ιδιότητες, την τοξικότητα και τη λειτουργικότητα των καινοτόμων νανοσυστημάτων μεταφοράς φαρμακομορίων, με τελικό στόχο την ανάπτυξη ποιοτικών, ασφαλών και αποτελεσματικών καινοτόμων φαρμάκων για τη θεραπεία του καρκίνου.
περισσότερα
Περίληψη σε άλλη γλώσσα
Nanotechnology has achieved great breakthroughs in our era, with applications that exceed the capabilities of conventional strategies in many scientific fields, including Medicine and Pharmacy. Nanomedicine has thrived since the development of the first nanotechnological products in the late 20th century and has evolved to be one of the most promising endeavors in fighting human diseases. In this context, liposomes have long been utilized as nanotechnological carriers of drug molecules and are considered one of the most well-known platforms for this purpose. These cell-like nanocarriers exhibit structure and properties in the mesoscale that are dynamic, governed by the mechanism and laws of self-assembly. This process is of critical importance for the development of new innovative nanomedicinal products, as well as for the regulation of their follow-up “nanosimilar” products.The present PhD thesis deals with the modern issue of stimuli-responsive chimeric/mixed nanocarriers for cancer ...
Nanotechnology has achieved great breakthroughs in our era, with applications that exceed the capabilities of conventional strategies in many scientific fields, including Medicine and Pharmacy. Nanomedicine has thrived since the development of the first nanotechnological products in the late 20th century and has evolved to be one of the most promising endeavors in fighting human diseases. In this context, liposomes have long been utilized as nanotechnological carriers of drug molecules and are considered one of the most well-known platforms for this purpose. These cell-like nanocarriers exhibit structure and properties in the mesoscale that are dynamic, governed by the mechanism and laws of self-assembly. This process is of critical importance for the development of new innovative nanomedicinal products, as well as for the regulation of their follow-up “nanosimilar” products.The present PhD thesis deals with the modern issue of stimuli-responsive chimeric/mixed nanocarriers for cancer therapy, which belong to the class of advanced drug delivery nanosystems (aDDnSs) for complex diseases. Aim of the research was to rationaly design and develop chimeric nanosystems that respond to certain physical and physiological conditions, i.e. temperature alterations and pH variations, as well as to evaluate their self-assembly, final properties and in vitro and in vivo behavior. These nanosystems are comprised of two different classes of biomaterials, namely phospholipids and amphiphilic diblock copolymers and are promising candidates for cancer therapy, by delivering and releasing therapeutic agents selectively to the disease site.The analytical tools utilized for the evaluation of the biomaterial interactions and their self-assembly contribute to the development of quality nanotechnological formulations, by offering insight into the nanoscale properties of such systems and their connection with the final nanocarrier. These tools are associated with the thermodynamics, physicochemical properties, stability, morphology, biophysics and functionality and finally, with the biological toxicity and effectiveness of chimeric nanosystems. In particular, they included thermal analysis, such as differential scanning calorimetry (DSC) or micro-DSC, fluorescence spectroscopy, light scattering, imaging techniques, like transmission electron microscopy (TEM) and cryo-TEM and ultimately, biological assays, through in vitro and in vivo models. By obtaining the full profile of a nanosystem, such as liposomes, based on these tools, not only we may develop innovative drug delivery nanoplatforms, but we may also understand the role of the individual molecules, e.g. lipids and polymers, and of the self-assembly process in the final medicinal product.Ultimately, the present PhD work led to the development of biocompatible and functional chimeric nanosystems, which are promising as drug delivery platforms in cancer therapy, through their stimuli-responsive behavior. The importance of establishing a rationale of evaluation for these nanosystems through the integration of certain important tools is also conspicuous and may provide knowledge for further development of innovative medicines. Additionally, they may contribute to the study and authorization of their follow-up products, known as “nanosimilars”. These tools regard the evaluation of the self-assembly mechanism and its relationship with the final properties, toxicity and functionality of aDDnsS, aiding the production of quality, safe and effective innovative nanomedicines for cancer therapy.
περισσότερα