Μέθοδοι βαθιάς μάθησης για ανάλυση δεδομένων

Περίληψη

Οι πρόσφατες εξελίξεις στον τομέα της Βαθιάς Μάθησης (Deep Learning) παρείχαν ισχυρά εργαλεία ανάλυσης δεδομένων. Παρόλα αυτά, η μεγάλη υπολογιστική πολυπλοκότητα των μεθόδων Βαθιάς Μάθησης περιορίζει σημαντικά τη δυνατότητα εφαρμογής τους, ειδικά όταν οι διαθέσιμοι υπολογιστικοί πόροι είναι περιορισμένοι. Επιπλέον, η ευελιξία πολλών μεθόδων βαθιάς μάθησης περιορίζεται σημαντικά από την αδυναμία τους να συνδυαστούν αποτελεσματικά με κλασικές μεθόδους Μηχανικής Μάθησης. Η κύρια στόχευση της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη μεθόδων Βαθιάς Μάθησης οι οποίες θα μπορούν να χρησιμοποιηθούν αποτελεσματικά για την επίλυση διαφόρων προβλημάτων ανάλυσης δεδομένων (κατηγοριοποίηση, ομαδοποίηση, παλινδρόμηση, κτλ.) με τη χρήση διαφορετικών δεδομένων (εικόνα, βίντεο, κείμενο, χρονοσειρές), ενώ ταυτόχρονα αντιμετωπίζουν αποτελεσματικά τα παραπάνω προβλήματα. Για τον σκοπό αυτό, πρώτα αναπτύχθηκε μία νευρωνική επέκταση του μοντέλου του Σάκου Χαρακτηριστικών (Bag-of-Features), η οποία ...
περισσότερα

Περίληψη σε άλλη γλώσσα

Recent advances in Deep Learning (DL) have provided powerful tools for various data analysis tasks. However, DL methods suffer from high complexity, hindering their successful application when limited computational resources are available, while combining them with traditional machine learning methods is not always a straightforward task, further limiting their flexibility. The primary focus of this Ph.D. thesis is to develop DL methods that can tackle a wide range of different data analysis tasks (classification, clustering, regression, etc.) using any kind of data (image, video, text, time series), while overcoming the aforementioned limitations. First, a neural generalization of the Bag-of-Features model is proposed and combined with various feature extractors, including Deep Convolutional Neural Networks, increasing the accuracy of the networks and providing much better invariance to distribution shifts, while greatly reducing the number of parameters of the model over the competit ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/44841
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/44841
ND
44841
Εναλλακτικός τίτλος
Deep learning methods for data analysis
Συγγραφέας
Πασσαλής, Νικόλαος (Πατρώνυμο: Χαράλαμπος)
Ημερομηνία
2018
Ίδρυμα
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Σχολή Θετικών Επιστημών. Τμήμα Πληροφορικής. Τομέας Ψηφιακών Μέσων
Εξεταστική επιτροπή
Τέφας Αναστάσιος
Πήτας Ιωάννης
Κοτρόπουλος Κωνσταντίνος
Νικολαΐδης Νικόλαος
Τσουμάκας Γρηγόριος
Λύκας Αριστείδης
Ντελόπουλος Αναστάσιος
Επιστημονικό πεδίο
Φυσικές ΕπιστήμεςΕπιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική
Λέξεις-κλειδιά
Μηχανική μάθηση; Βαθιά μάθηση; Ανάλυση δεδομένων
Χώρα
Ελλάδα
Γλώσσα
Αγγλικά
Άλλα στοιχεία
xvi, 212 σ., εικ., πιν., σχημ., γραφ.
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)