Towards a fully autonomous and cooperative deployment of multi-robot teams for exploration and coverage in unknown or partially known environments
Abstract
In this thesis we deal with the problem of navigating a team of robots in both known and unknown environments, so as the mission's objectives to be fulfilled. The structure of this thesis is divided into two main pillars. In the first pillar we deal with the problem of determining an optimal path involving all points of a given area of interest (offline), while avoiding sub-areas with specific characteristics (e.g. obstacles, no-fly zones, etc.). This problem, which is usually referred as multi-robot coverage path planning (mCPP), has been proven to be NP-hard. Currently, existing approaches produce polynomial algorithms that are able to only approximate the minimum covering time. In chapter 3, a novel methodology is proposed, capable of producing such optimal paths in approximately polynomial time. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, in such a way to guarantee: com ...
Towards a fully autonomous and cooperative deployment of multi-robot teams for exploration and coverage in unknown or partially known environments
Abstract
In this thesis we deal with the problem of navigating a team of robots in both known and unknown environments, so as the mission's objectives to be fulfilled. The structure of this thesis is divided into two main pillars. In the first pillar we deal with the problem of determining an optimal path involving all points of a given area of interest (offline), while avoiding sub-areas with specific characteristics (e.g. obstacles, no-fly zones, etc.). This problem, which is usually referred as multi-robot coverage path planning (mCPP), has been proven to be NP-hard. Currently, existing approaches produce polynomial algorithms that are able to only approximate the minimum covering time. In chapter 3, a novel methodology is proposed, capable of producing such optimal paths in approximately polynomial time. In the heart of the proposed approach lies the DARP algorithm, which divides the terrain into a number of equal areas each corresponding to a specific robot, in such a way to guarantee: com ...
serLastName" value=""/>
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Usage statistics
VIEWS
Concern the unique Ph.D. Thesis' views for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.
ONLINE READER
Concern the online reader's opening for the period 07/2018 - 07/2023.
Source: Google Analytics.
Source: Google Analytics.
DOWNLOADS
Concern all downloads of this Ph.D. Thesis' digital file.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.
USERS
Concern all registered users of National Archive of Ph.D. Theses who have interacted with this Ph.D. Thesis. Mostly, it concerns downloads.
Source: National Archive of Ph.D. Theses.
Source: National Archive of Ph.D. Theses.