Μεθοδολογίες μηχανικής μάθησης βασισμένες σε τεχνητά ανοσοποιητικά συστήματα

Περίληψη

Η παρούσα διδακτορική διατριβή έγκειται στον ευρύτερο ερευνητικό τομέα της Αναγνώρισης Προτύπων και στοχεύει στην θεωρητική και πειραματική απόδειξη της εγκυρότητας των Τεχνητών Ανοσοποιητικών Συστημάτων ως ένα εναλλακτικό υπόδειγμα μηχανικής μάθησης. Η κύρια πηγή έμπνευσης για τη δημιουργία των Τεχνητών Ανοσοποιητικών Συστημάτων είναι το Προσαρμοστικό Ανοσοποιητικό Σύστημα των σπονδυλωτών οργανισμών το οποίο συνιστά ένα από τα πιο εξελιγμένα βιολογικά συστήματα. Συγκεκριμένα, το Προσαρμοστικό Ανοσοποιητικό Σύστημα έχει προσαρμοστεί μέσω της βιολογικής εξέλιξης κατά τέτοιο τρόπο έτσι ώστε να είναι σε θέση να επιτελεί συνεχώς τη διαδικασία της διάκρισης του εαυτού από τον μη-εαυτό η οποία συνιστά ένα ταξινομητικό πρόβλημα εξαιρετικής ταξικής ανισορροπίας. Η τρέχουσα διδακτορική διατριβή εστιάζει στην αντιμετώπιση των θεμελιωδών προβλημάτων με τα οποία ασχολείται η αναγνώριση προτύπων μέσω της ανάπτυξης αλγορίθμων μηχανικής μάθησης οι οποίοι βασίζονται στα βιολογικά ανοσοποιητικά σ ...
περισσότερα

Περίληψη σε άλλη γλώσσα

The current Ph.D. thesis lies within the field of Pattern Recognition, providing theoretical and experimental justifications concerning the validity of Artificial Immune Systems as an alternative machine learning paradigm. The main source of inspiration stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems that is particularly evolved in order to continuously address an extremely unbalanced pattern classification problem, by performing the self / non-self discrimination process. The primary effort undertaken in this dissertation is focused on addressing the fundamental problems of Pattern Recognition by developing Artificial Immune System-based machine learning algorithms. Therefore, the relevant research is particularly interested in providing alternative machine learning approaches for the problems of Clustering, Classification and One-Class Classification, measuring their efficiency against state of the art pattern recogniti ...
περισσότερα

Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.

DOI
10.12681/eadd/37486
Διεύθυνση Handle
http://hdl.handle.net/10442/hedi/37486
ND
37486
Εναλλακτικός τίτλος
Artificial immune system based machine learning methodologies
Συγγραφέας
Σωτηρόπουλος, Διονύσιος (Πατρώνυμο: Νικόλαος)
Ημερομηνία
2010
Ίδρυμα
Πανεπιστήμιο Πειραιώς. Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Πληροφορικής
Εξεταστική επιτροπή
Τσιχριντζής Γεώργιος
Δεσπότης Δημήτριος
Φούντας Ευάγγελος
Παναγιωτόπουλος Θεμιστοκλής
Αποστόλου Δημήτριος
Νίκου Χριστόφορος
Αλωνιστιώτη Αθανασία
Επιστημονικό πεδίο
Φυσικές ΕπιστήμεςΕπιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική
Λέξεις-κλειδιά
Τεχνητά Ανοσοποιητικά Συστήματα
Χώρα
Ελλάδα
Γλώσσα
Ελληνικά
Άλλα στοιχεία
412 σ., πιν., σχημ.
Ειδικοί όροι χρήσης/διάθεσης
Το έργο παρέχεται υπό τους όρους της δημόσιας άδειας του νομικού προσώπου Creative Commons Corporation:
Στατιστικά χρήσης
ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Σχετικές εγγραφές (με βάση τις επισκέψεις των χρηστών)