Μοντέλα ψηφοφόρου με παράμετρο εμπιστοσύνης
Περίληψη
Με την βοήθεια τεχνικών για συστήματα αλληλεπιδρώντων σωματιδίων, σκιαγραφήθηκαν και αποδείχθηκαν θεωρήματα για μοντέλα γνώμης και πολιτιστικής δυναμικής. Τα χωρικά αυτά στοχαστικά μοντέλα εξετάζονται ως γενικεύσεις με μια παράμετρο εμπιστοσύνης ε του γνωστού μοντέλου ψηφοφόρου. Το κεντρικό ερώτημα είναι ο καθορισμός της ασυμπτωτικής δυναμικής, η οποία ενδέχεται να εμφανίζει μετάβαση φάσης από μια ποιοτική συμπεριφορά σε κάποια άλλη. Τα παραχθέντα θεωρήματα αφορούν: α) στην επέκταση του θεωρήματος ομαδοποίησης του Lanchier (2012) σε αυθαίρετους γράφους απόψεων, και β) στην εφαρμογή της μεθοδολογίας των Bramson και Griffeath (1989) σε δυο συστήματα με ουδέτερες αλληλεπιδράσεις, την ουδέτερη εκδοχή των κυκλικών συστημάτων σωματιδίων και γ) το μοντέλο Axelrod για την διάχυση των πολιτιστικών περιοχών. Στα δυο τελευταία μοντέλα εξετάζονται τα φαινόμενα τόσο της καθήλωσης (η άποψη κάθε δράστη μεταβάλλεται πεπερασμένα συχνά) όσο και του κατακερματισμού (μη ομαδοποίηση) του άπειρου συστήματος ...
περισσότερα
Περίληψη σε άλλη γλώσσα
By the use of techniques from interacting particle systems, heuristics and proof have been produced for opinion and cultural dynamical models. These stochastic spatial models are investigated as generalizations with a confidence parameter ε of the well-known voter model. The main question is the characterization of dynamics in the asymptotic limit of time, which may exhibit phase transition from one qualitative behavior to another. The produced theorems are: a) an extension of the clustering theorem by Lanchier (2012) to arbitrary opinion graphs, and b) the appropriation of the Bramson and Griffeath (1989) methodology for systems with neutral interactions, namely, a neutral version of cyclic particle systems and c) the model of Axelrod for the diffusion of cultural domains. In the last two models, the studied phenomena is the fixation of the infinite system (each agent changes her opinion finitely often) to a fragmented configuration (non-clustering). - See more at: http://nemertes.lis ...
περισσότερα
![]() | |
![]() | Κατεβάστε τη διατριβή σε μορφή PDF (3.6 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης

ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.

ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.