Using clustering to aid text classification of single-labelled datasets
Περίληψη σε άλλη γλώσσα
Supervised and unsupervised learning have been the focus of critical research in the areas of machine learning and artificial intelligence. In the literature, these two streams flow independently of each other, despite their close conceptual and practical connections. This dissertation demonstrates that unsupervised learning algorithms, i.e. clustering, can provide us with valuable information about the data and help in the creation of high-accuracy text classifiers. In the case of clustering,the aim is to extract a kind of \structure" from a given sample of objects. The reasoning behind this is that if some structure exists in the objects, it is possible to take advantage of this information and find a short description of the data,exploiting the dependence or association between index terms and documents.This concise representation of the whole dataset can be properly incorporated in the existing data representation. The use of prior knowledge about the nature oft he dataset helps in ...
περισσότερα
![]() | |
![]() | Κατεβάστε τη διατριβή σε μορφή PDF (1.45 MB)
(Η υπηρεσία είναι διαθέσιμη μετά από δωρεάν εγγραφή)
|
Όλα τα τεκμήρια στο ΕΑΔΔ προστατεύονται από πνευματικά δικαιώματα.
|
Στατιστικά χρήσης

ΠΡΟΒΟΛΕΣ
Αφορά στις μοναδικές επισκέψεις της διδακτορικής διατριβής για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΞΕΦΥΛΛΙΣΜΑΤΑ
Αφορά στο άνοιγμα του online αναγνώστη για την χρονική περίοδο 07/2018 - 07/2023.
Πηγή: Google Analytics.
Πηγή: Google Analytics.

ΜΕΤΑΦΟΡΤΩΣΕΙΣ
Αφορά στο σύνολο των μεταφορτώσων του αρχείου της διδακτορικής διατριβής.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.

ΧΡΗΣΤΕΣ
Αφορά στους συνδεδεμένους στο σύστημα χρήστες οι οποίοι έχουν αλληλεπιδράσει με τη διδακτορική διατριβή. Ως επί το πλείστον, αφορά τις μεταφορτώσεις.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.
Πηγή: Εθνικό Αρχείο Διδακτορικών Διατριβών.