Abstract
In the present thesis the potential utilization of ferroalumina, a by-product that derives from the dewatering of red mud, as a raw material as well as an additive material in the cement production route is examined. Red mud is the main by-product that derives from the digestion of bauxite ores during Bayer process in order to produce alumina. It comprises from the ore part that has not reacted, the part that has reacted and has formed other than the desired compounds, from supplementary materials that were introduced during the procedure and from aluminium hydroxides that were not recovered. The removal of red mud’s water content leads to the production of ferroalumina. Although there are many ways of removing the water, the use of a filter press has many advantages. The laboratory study of the water removal from red mud by means of a filter press led to the formation of a cake with ~35%wt of water. Parameters, such as the filter type and the material that it comprises were examined w ...
In the present thesis the potential utilization of ferroalumina, a by-product that derives from the dewatering of red mud, as a raw material as well as an additive material in the cement production route is examined. Red mud is the main by-product that derives from the digestion of bauxite ores during Bayer process in order to produce alumina. It comprises from the ore part that has not reacted, the part that has reacted and has formed other than the desired compounds, from supplementary materials that were introduced during the procedure and from aluminium hydroxides that were not recovered. The removal of red mud’s water content leads to the production of ferroalumina. Although there are many ways of removing the water, the use of a filter press has many advantages. The laboratory study of the water removal from red mud by means of a filter press led to the formation of a cake with ~35%wt of water. Parameters, such as the filter type and the material that it comprises were examined with the further use of a pilot scale filter press. The results indicated that the filter press can produce a cake with constant water amount between 27% and 32%wt and density 2g/cm3. The latter results, led to the installation of an industrial high pressure filter press, which is in operation since the beginning of 2006, in the Aluminium Hellas industry. Ferroalumina’s chemical analysis indicates that it can be used as a secondary material in the cement industry, mainly as an iron oxide carrier. The study for its suitability was performed by preparing Portland cement raw mixtures introducing ferroalumina up to 5%wt are a raw material. Consequently, the raw mixtures were fired up to 1550oC in order to produce clinker and co-grounded with gypsum in order to produce Portland cement. The results indicate that the produced ferroalumina cements presents similar mineralogical composition with the cements without ferroalumina whilst their physical properties such as the water demand and the setting time are at the same levels. Regarding their mechanical properties, the obtained compressive strength values are ranking all the cements in the 42.5N category. Especially the ferroalumina cements are falling into a higher category and more specifically in the 52.5N category due to their high early day strengths. Finally, the study indicate that the ferroalumina cements presents higher amounts of water soluble chromium than the cement without ferroalumina (reference), most probably due to their higher initial amount of total chromium. The industrial trials that were performed by the Greek cement industries TITAN and AGET Heracles showed that the addition of ferroalumina up to 2.7%wt improves the burnability of the mixture due to the silica modulus reduction. The substitution of the raw material pyrite from the ferroalumina, led to the reduction of Mn, Pb, Zn and Cu on the raw mixture whilst it increased the Cr percentage. The results for the produced clinker indicate that the ferroalumina addition did not affect the formatted mineralogical phases. The compressive strength values of the obtained cements, was 27.7MPa after the first 2 days and 51.6MPa after 28 days of curing. The flue gas emissions were at the same levels during the cement production indicating that the ferroalumina addition does not affect that part of production either. In order to evaluate the environmental behaviour of the ferroalumina cements, two types of leaching tests, which refer to different field scenarios, were employed. The NEN 7345-tank test which refers to monolithic materials (“service life” scenario) and the prEN 14429-pH dependence test, which concerns granular materials (“second life” scenario). Two different cement samples were used for the above mentioned tests. The first one was produced without ferroalumina (reference sample) whilst the second one was produced with a 2%wt ferroalumina addition. The chemical analysis of the cement with ferroalumina showed that it presents greater content of Cr, Ni and V than the reference cement. The latter does not affect leaching in the service life scenario. More specifically in the case of Cr the reference cement presents the same leaching amount with the ferroalumina cement whilst in the case of Ni and V no leaching is observed for any of the two cement samples. During the “second life” scenario the leaching is greater in the case of the ferroalumina cement. The latter is related to the greater initial content of the above mentioned cement in Cr, Ni and V. The leaching behaviour is for both cements pH sensitive as higher leaching values for Cr and Ni are observed while the pH shifts to lower values. The new trends concerning the sustainable development through energy conversion and environmental protection have led the current study in the utilization of ferroalumina in the field of belite cements. The main difference of the above mentioned cements from the Portland cements is the low content in calcium silicate (C3S) mainly due to the lower firing temperature (~1350οC). The latter ranks the above mentioned cements in the environmental friendly cements category (green cements). The obtained results indicate that the use of ferroalumina as a raw material for the production of belite cements is possible as well as that the produced cements have a certain drawback when compared with the OPC. The lack of C3S leads to low early day strength. This drawback was confronted with the introduction of gypsum in the raw mixture which led to the formation of the hydraulic compound 4CaO.3Al2O3.SO3 (Klein’s compound) during the firing procedure. The last chapter deals with the possibility of utilize ferroalumina as a substrate for the absorption of hexavalent chromium in order to use it as an additive material in the last stage of cement production. The study examined parameters such as the pH of the solution, the contact time and the liquid to solid ratio (l:s ratio). The results indicate that the ferroalumina is able to absorb chromium and that this ability increases if a stage of chemical and thermal treatment is employed before. The treatment enhances ferroalumina’s absorption ability due to an increase of specific surface from 10m2 g-1 to 70m2 g-1. The absorbance mechanism is described with the Langmuir model and the best results are obtained for pH 5 and contact time 1h. The amount of chromium that is absorbed from each grammar of ferroalumina in the above mentioned conditions is 0.82mg.
show more