Περίληψη
Κατά την επαφή επιφανειών, όπως οι βαλβίδες καρδιάς ή και άλλοι ιστοί, με βιολογικά υγρά, υπό προϋποθέσεις, εναποτίθενται άλατα φωσφορικού ασβεστίου, λόγω του υφιστάμενου υπερκορεσμού με αποτέλεσμα τη μείωση της λειτουργικότητάς τους. Οι αυξημένες περιπτώσεις ασβεστοποίησης αορτικών αλλά και βιοπροσθετικών βαλβίδων καρδιάς, έχει καταστήσει επιτακτική ανάγκη τη μελέτη και τη κατανόηση του μηχανισμού του σχηματισμού των εναποθέσεων. Στην παρούσα διατριβή, έγινε φυσικοχημικός χαρακτηρισμός παθολογικών εναποθέσεων που απομονώθηκαν από ανθρώπινες φυσικές και βιοπροσθετικές βαλβίδες καρδιάς. Ο χαρακτηρισμός έδειξε ότι οι εναποθέσεις αποτελούνται από κρυσταλλικές φάσεις φωσφορικού ασβεστίου. Έγινε ταυτοποίηση της κρυσταλλικής φάσης που είχε εναποτεθεί στις φυσικές και βιοπροσθετικές βαλβίδες ασθενών με χρήση αναλυτικών μεθόδων (XRD, FT-IR, SEM) και συγκρίθηκαν τα αποτελέσματα. Η μορφολογική εξέταση έδειξε κυρίως την παρουσία απατιτικών (υδροξυαπατίτης με υποκαταστάσεις ανθρακικών ιόντων και ι ...
Κατά την επαφή επιφανειών, όπως οι βαλβίδες καρδιάς ή και άλλοι ιστοί, με βιολογικά υγρά, υπό προϋποθέσεις, εναποτίθενται άλατα φωσφορικού ασβεστίου, λόγω του υφιστάμενου υπερκορεσμού με αποτέλεσμα τη μείωση της λειτουργικότητάς τους. Οι αυξημένες περιπτώσεις ασβεστοποίησης αορτικών αλλά και βιοπροσθετικών βαλβίδων καρδιάς, έχει καταστήσει επιτακτική ανάγκη τη μελέτη και τη κατανόηση του μηχανισμού του σχηματισμού των εναποθέσεων. Στην παρούσα διατριβή, έγινε φυσικοχημικός χαρακτηρισμός παθολογικών εναποθέσεων που απομονώθηκαν από ανθρώπινες φυσικές και βιοπροσθετικές βαλβίδες καρδιάς. Ο χαρακτηρισμός έδειξε ότι οι εναποθέσεις αποτελούνται από κρυσταλλικές φάσεις φωσφορικού ασβεστίου. Έγινε ταυτοποίηση της κρυσταλλικής φάσης που είχε εναποτεθεί στις φυσικές και βιοπροσθετικές βαλβίδες ασθενών με χρήση αναλυτικών μεθόδων (XRD, FT-IR, SEM) και συγκρίθηκαν τα αποτελέσματα. Η μορφολογική εξέταση έδειξε κυρίως την παρουσία απατιτικών (υδροξυαπατίτης με υποκαταστάσεις ανθρακικών ιόντων και ιόντων νατρίου) πρισματικών μικροκρυστάλλων. Επίσης, ταυτοποιήθηκε η παρουσία του θερμοδυναμικά ασταθέστερου φωσφορικού οκτασβεστίου (OCP). Η χημική σύσταση των εναποθέσεων στις ασβεστοποιημένες βαλβίδες ασθενών προσδιορίστηκε διαλύοντας συγκεκριμένη ποσότητα στερεού σε διάλυμα HCl 0.1Ν. Έγινε ανάλυση ιόντων ασβεστίου, νατρίου, μαγνησίου με ατομική απορρόφηση και φωσφορικών ιόντων φασματοφωτομετρικά. Οι λόγοι των γραμμομοριακών συγκεντρώσεων Ca/P των στερεών υπολογίστηκαν από τη χημική ανάλυση. Οι γραμμομοριακοί λόγοι των βιοπροσθετικών βαλβίδων βρέθηκαν Ca/P~1.55 ± 0.25, ενώ οι γραμμομοριακοί λόγοι των φυσικών βαλβίδων βρέθηκαν Ca/P ~ 1.80 ± 0.20. Στα πλαίσια της εκπόνησης της παρούσας διατριβής, μελετήθηκε η κινητική της ασβεστοποίησης in vitro σε χοίρειες αορτικές βαλβίδες καρδιάς (γλωχίνες & τοιχώματα) και σε βόειο περικάρδιο. Έγινε μελέτη του σχηματισμού των εναποθέσεων φωσφορικού ασβεστίου σε υπέρκορα διαλύματά του. Όλα τα πειράματα στην παρούσα εργασία έγιναν σε θερμοκρασία 37°C, pH 7.4 ± 0.1 και ιοντική ισχύ 0.15 Μ ρυθμισμένη με ΝaCl. Για την μέτρηση του ρυθμού κρυσταλλικής ανάπτυξης και άλλων παραμέτρων όπως ο χρόνος επαγωγής, η μορφολογία και η στοιχειομετρική σύσταση των σχηματιζόμενων κρυστάλλων χρησιμοποιήθηκε η μέθοδος του σταθερού υπερκορεσμού (σταθερή σύσταση υπέρκορων διαλυμάτων). O ρυθμός κρυστάλλωσης του φωσφορικού οκτασβεστίου (Ca₄H(PO₄)₃∙2.5H₂O, OCP) στις γλωχίνες βρέθηκε ότι ήταν μεγαλύτερος σε σύγκριση με τον αντίστοιχο ρυθμό σχηματισμού του ιδίου άλατος στα αορτικά τοιχώματα και στο βόειο περικάρδιο. Η πρώτης τάξεως εξάρτηση του ρυθμού κρυστάλλωσης από τον σχετικό υπερκορεσμό έδειξε ότι το καθορίζον την ταχύτητα στάδιο είναι η επιφανειακή διάχυση. Η κρυσταλλική φάση που σχηματίσθηκε με ετερογενή πυρηνογένεση στους ιστούς ταυτοποιήθηκε με τη βοήθεια αναλυτικών μεθόδων όπως η περίθλαση ακτίνων Χ (XRD) και η ηλεκτρονική μικροσκοπία σάρωσης (SEM). Η μορφολογική εξέταση των εναποθέσεων στους ιστούς έδειξε τον σχηματισμό πλακoειδών και φυλλόμορφων κρυστάλλων φωσφορικού οκτασβεστίου (OCP) καθώς και πρισματικών μικροκρυστάλλων του θερμοδυναμικά σταθερότερου υδροξυαπατίτη (Ca₅(PO₄)₃OH, HAP), ο σχηματισμός των οποίων αποδόθηκε στην υδρόλυση του OCP. Η σχέση υποστρώματος (ιστών) και της κρυσταλλικής φάσης η οποία κρυσταλλώθηκε στην επιφάνειά τους, διερευνήθηκε και με τη μελέτη του ηλεκτροστατικού δυναμικού των επιφανειών. Οι αντίστοιχες μετρήσεις έγιναν με τη μέθοδο του δυναμικού ροής (streaming potential) σε ειδική κυψελλίδα η οποία κατασκευάσθηκε για τον σκοπό αυτό. Στις μετρήσεις που έγιναν, οι ιστοί, τόσο άνευ αλλά και με εναποθέσεις φωσφορικού ασβεστίου, αποτέλεσαν την σταθερή φάση ενώ κινουμένη φάση ήταν ηλεκτρολυτικό διάλυμα ΚΝΟ₃ ή NaCl. Πραγματοποιήθηκαν για πρώτη φορά σε συστήματα αυτού του είδους, μετρήσεις δυναμικού ροής και υπολογίσθηκαν οι τιμές των αντιστοίχων επιφανειακών δυναμικών (δυναμικά ζ) σε ιστούς, προ και μετά την ασβεστοποίησή τους με άλατα του φωσφορικού ασβεστίου. Η αύξηση της ιονικής ισχύος είχε ως αποτέλεσμα τη μείωση του δυναμικού επιφάνειας ιστών που εξετάστηκαν. Το δυναμικό ροής ήταν ανάλογο της εφαρμοζόμενης πίεσης και από τα διαγράμματα δυναμικού ροής-πίεσης συμπεραίνεται ότι η επιφάνεια των ιστών (περικαρδίου και γλωχίνων) έχει αρνητικό επιφανειακό φορτίο ενώ ασβεστοποίηση των ιστών αυτών έδωσε αρνητικότερες τιμές του ζ δυναμικού τους. Με δεδομένο ότι στην τιμή του pH ισορροπίας που έγιναν οι μετρήσεις, τόσο η επιφάνεια του υποστρώματος όσο και η κρυσταλλική φάση έχουν μικρό αρνητικό φορτίο και δεν φαίνεται οι ηλεκτροστατικές δυνάμεις κρυστάλλων-υποστρωμάτων που εξετάσθηκαν να παίζουν σημαντικό ρόλο. Οι μετρήσεις που έγιναν σε υψηλές τιμές της ιοντικής ισχύος, έδειξαν αύξηση του αρνητικού επιφανειακού φορτίου για το σύνθετο υλικό υπόστρωμα-ΗΑΡ. Η συνάφεια υποστρώματος-κρυσταλλικής φάσης είναι πιθανώς δομικής φύσης. Οι συνεχώς αυξανόμενες απαιτήσεις για την παρασκευή βιοϋλικών έχουν ως αποτέλεσμα το συνεχώς αυξανόμενο ενδιαφέρον για τη σύνθεση και τη μελέτη βιοτσιμέντων, στα συστατικά των οποίων περιλαμβάνονται άλατα φωσφορικού ασβεστίου ή και ανθρακικού ασβεστίου. Tα βιοτσιμέντα έχουν πολλαπλές βιο-ιατρικές εφαρμογές λόγω της δυνατότητας απορρόφησης ή και τροποποίησης με την ενσωμάτωσή τους στα οστά. Μεταξύ των κρυσταλλικών φάσεων του φωσφορικού ασβεστίου, η θερμοδυναμικά σταθερότερη είναι ο HAP, ο οποίος είναι βασικό ανόργανο συστατικό των σκληρών ιστών των ανώτερων θηλαστικών και αποτελεί ένα πολύ καλό βιοσυμβατό υλικό. Παρασκευάστηκαν απατιτικά τσιμέντα φωσφορικού ασβεστίου με ανάμειξη α-φωσφορικού τριασβεστίου (α-Ca₃(PO₄)₂, a-TCP) με υδατικό διάλυμα Na₂HPO₄ και μελετήθηκε η κινητική της κρυστάλλωσης ΗΑP στα απατιτικά τσιμέντα σε υπέρκορα διαλύματα φωσφορικού ασβεστίου, σε συνθήκες σταθερού υπερκορεσμού. Έγινε σειρά πειραμάτων στα οποία μετρήθηκε πρώτα η κινητική της κρυστάλλωσης συνθετικών καλά χαρακτηρισμένων κρυσταλλιτών HAP. Η σειρά αυτή των πειραμάτων ήταν το σύστημα αναφοράς. Πρόσθετες σειρές πειραμάτων έγιναν σε υπέρκορα διαλύματα με σύσταση τροποποιημένων προσομοιωμένων βιολογικών ρευστών (mSBF). Ο ρυθμός κρυστάλλωσης HAP σε φύτρα ΗΑΡ σε ηλεκτρολυτικό διάλυμα, ήταν μεγαλύτερος σε σύγκριση με τον αντίστοιχο ρυθμό σε προσομοιωμένο βιολογικό ρευστό (SBF), της αυτής ιοντικής ισχύος και υπερκορεσμού. Η εξάρτηση του ρυθμού κρυστάλλωσης από τον σχετικό υπερκορεσμό, βρέθηκε ότι ήταν πρώτης τάξεως, οδηγώντας και σε αυτή την περίπτωση στο συμπέρασμα, ότι η κρυστάλλωση και στις δύο περιπτώσεις ηλεκτρολυτικών διαλυμάτων γίνεται με μηχανισμό επιφανειακής διάχυσης. Κατά την σπορά των υπέρκορων διαλυμάτων με κρυσταλλίτες των βιοτσιμέντων το συμπέρασμα ως προς τον μηχανισμό κρυσταλλικής ανάπτυξης ήταν το ίδιο. Ο φυσικοχημικός χαρακτηρισμός τόσο των τσιμέντων όσο και της εναποτεθείσας κρυσταλλικής φάσης έγινε με αναλυτικές μεθόδους χαρακτηρισμού στερεών (XRD, FT-IR, SEM). Τα αποτελέσματα έδειξαν ότι τα τσιμέντα αποτελούνταν κατά κύριο λόγο από απατίτη με ποικίλη μορφολογία. Βρέθηκαν απατιτικοί κρύσταλλοι της τάξης μερικών δεκάδων nm, μεγάλοι πρισματικοί κρύσταλλοι (150-300 nm) καθώς και φυλλόμορφες πλάκες 1-2 μm. Παράλληλα, διερευνήθηκε η επίδραση και άλλων ανόργανων υποστρωμάτων που χρησιμοποιούνται ως βιοϋλικά, όπως είναι τα βιοτσιμέντα τα οποία παρασκευάζονται από μιγμάτα ανθρακικού και φωσφορικού ασβεστίου. Έγινε μελέτη της κινητικής της κρυστάλλωσης φωσφορικού οκτασβεστίου (ΟCP) με τη μέθοδο σταθερού υπερκορεσμού στους 37°C σε pH 7.40 ± 0.1 και σε ιοντική ισχύ 0.15 Μ NaCl. Για την εκκίνηση της κρυσταλλικής ανάπτυξης σε σταθερά υπέρκορα διαλύματα φωσφορικού ασβεστίου χρησιμοποιήθηκαν το βιοτσιμέντο τύπου Α (μίγμα βατερίτη (CaCO₃) και διένυδρου φωσφορικού ασβεστίου (CaHPO4∙2H2O, DCPD)), και το βιοτσιμέντο τύπου Β (μίγμα βατερίτη (CaCO3), διένυδρου φωσφορικού ασβεστίου (CaHPO₄∙2H₂O, DCPD) και 20% ανθρακικού στροντίου (SrCO₃). Επιπλέον, για τη μελέτη της κινητικής της κρυστάλλωσης χρησιμοποιήθηκαν συνθετικοί κρύσταλλοι υδροξυαπατίτη (HAP) και φωσφορικού οκτασβεστίου (OCP), ως υλικά αναφοράς. Η παρουσία ανθρακικών ιόντων έδειξε πως επηρεάζει το ρυθμό κρυστάλλωσης και από την εξάρτηση του ρυθμού κρυστάλλωσης από τον σχετικό υπερκορεσμό συμπεραίνεται ότι η κρυστάλλωση γίνεται με μηχανισμό επιφανειακής διάχυσης. Η μορφολογική εξέταση στις περιπτώσεις κρυστάλλωσης OCP σε φύτρα κρυστάλλων OCP και βιοτσιμέντων (μίγμα CaCO₃ και DCPD) έδειξε φυλλόμορφους σχηματισμούς φωσφορικού οκτασβεστίου (OCP), ενώ πλακοειδείς κρύσταλλοι φωσφορικού οκτασβεστίου (OCP) αναπτύχθηκαν σε φύτρα ΗΑΡ. Η συνάφεια μεταξύ ανθρακικών και φωσφορικών αλάτων του ασβεστίου είναι σημαντική για την κατανόηση της συμπεριφοράς και των ιδιοτήτων νέων βιοϋλικών που βασίζονται σ’αυτά τα υλικά. Έτσι, έγινε διερεύνηση της δυνατότητα χρήσεως διαφόρων πολυμορφικών φάσεων ανθρακικού ασβεστίου (CaCO₃) ως βάσεων για την παρασκευή νέων βιοϋλικών. Μελετήθηκε ο ετερογενής σχηματισμός του φωσφορικού οκτασβεστίου (OCP) σε υποστρώματα ανθρακικού ασβεστίου, σε συνθήκες σταθερού υπερκορεσμού στους 37°C σε pH 7.40 ± 0.1 και σε ιοντική ισχύ 0.15 Μ NaCl, χρησιμοποιώντας ως φύτρα σποράς κρυστάλλους ασβεστίτη καθώς και μίγμα κρυστάλλων αραγωνίτη-ασβεστίτη. H κρυστάλλωση του φωσφορικού οκτασβεστίου έλαβε χώρα μετά την πάροδο χρόνου επαγωγής, τ, στα δυο υποστρώματα CaCO₃ που μελετήθηκαν και οι αρχικοί ρυθμοί κρυσταλλικής ανάπτυξης ανά μονάδα επιφάνειας βρέθηκαν ότι ήσαν ανεξάρτητοι της ποσότητας των κρυσταλλικών φύτρων, γεγονός που υποδηλώνει την επιλεκτική πυρηνογένεση του σχηματιζόμενου στερεού (ΟCP) στα υποστρώματα που εξετάσθηκαν (CaCO₃). Η μορφολογική εξέταση της σχηματιζόμενης φάσης στα δυο υποστρώματα CaCO₃ επιβεβαίωσε τον αποκλειστικό σχηματισμό χαρακτηριστικών φυλλόμορφων κρυσταλλιτών OCP, ενώ ο σταθερότερος θερμοδυναμικά υδροξυαπατίτης (HAP) δε σχηματίστηκε ούτε κατευθείαν, ούτε και μέσω υδρόλυσης του θερμοδυναμικά ασταθέστερου OCP, ο οποίος έδειξε να σταθεροποιείται αναπτυσσόμενος ετερογενώς σε ανθρακικά άλατα του ασβεστίου. Είναι γνωστό, ότι η παρουσία ξένων ουσιών ή ιόντων στα υπέρκορα διαλύματα παίζει σημαντικό ρόλο τόσο στην κινητική σχηματισμού του φωσφορικού ασβεστίου όσο και στα χαρακτηριστικά του κρυσταλλικού στερεού το οποίο αναπτύσσεται. Ιδιαίτερο ενδιαφέρον παρουσιάζει ο ρόλος του στροντίου στην κινητική της βιολογικής ασβεστοποίησης, αφού όπως αναφέρεται στη βιβλιογραφία ενισχύει τη βιοενεργότητα και τη βιοσυμβατότητα των βιοϋλικών και μπορεί να βοηθήσει στην αντιμετώπιση της οστεοπόρωσης (π.χ. ρανελικό στρόντιο). Έγινε διερεύνηση της επίδρασης ιόντων στροντίου (Sr²⁺) στην κινητική κρυσταλλικής ανάπτυξης αλάτων φωσφορικού ασβεστίου σε υποστρώματα συνθετικών κρυστάλλων φωσφορικού οκτασβεστίου (OCP) και υδροξυαπατίτη (HAP) σε υπέρκορα διαλύματα φωσφορικού ασβεστίου. Η παρουσία των ιόντων στροντίου στα υπέρκορα διαλύματα φωσφορικού ασβεστίου έδειξε ότι ενσωματώθηκαν στο κρυσταλλικό πλέγμα τόσο του OCP όσο και του HAP, ενώ κινητικά επιβράδυνε τους ρυθμούς κρυστάλλωσης και των δύο αλάτων. Μεγαλύτερη μείωση του ρυθμού κρυσταλλικής ανάπτυξης μετρήθηκε στην περίπτωση του HAP. Επίσης, παρατηρήθηκαν αλλαγές στη μορφολογία των κρυστάλλων ενώ η παρουσία των ιόντων Sr²⁺ είχε ως αποτέλεσμα την επιβράδυνση της υδρολυτικής μετατροπής του θερμοδυναμικά ασταθέστερου OCP προς τον θερμοδυναμικά σταθερό HAP. Τέλος, μελετήθηκε η κινητική της διάλυσης των εναποθέσεων φωσφορικού ασβεστίου που απομονώθηκαν από ασβεστοποιημένες φυσικές βαλβίδες ασθενών, αλλά και συνθετικών καλά χαρακτηρισμένων κρυσταλλιτών HAP ως υλικού αναφοράς, σε ακόρεστα διαλύματα. Τα πειράματα έγιναν στους 37°C, ιοντική ισχύ 0.15 Μ NaCl, σε pH 7.4 ± 0.1 και σε συνθήκες σταθερής ακορεστότητας. Η εξάρτηση του ρυθμού διάλυσης από την σχετική ακορεστότητα των διαλυμάτων εργασίας, η οποία βρέθηκε ότι ήταν δευτέρας τάξεως, έδειξε ότι η διάλυση και στα δύο υποστρώματα ελέγχεται από επιφανειακή διάχυση των δομικών μονάδων. Η διάλυση των παθολογικών εναποθέσεων σε φυσικές βαλβίδες καρδιάς σε συνθήκες σταθερής ακορεστότητας έδωσε σταθερές ταχύτητας σημαντικά μεγαλύτερες σε σύγκριση με τις αντίστοιχες τιμές που ελήφθησαν για συνθετικούς κρυστάλλους ΗΑΡ. Από τη μορφολογική εξέταση τόσο των κρυστάλλων των ασβεστούχων εναποθέσεων όσο και του ΗAP μετά τη διάλυση παρατηρήθηκαν διαφορές μόνο ως προς το μέγεθος των κρυσταλλιτών. Μετά την διάλυση, οι πρισματικοί κρυσταλλίτες του ΗΑΡ είχαν μικρότερο μέγεθος τόσο ως προς το μήκος τους όσο και ως προς το πάχος.
περισσότερα
Περίληψη σε άλλη γλώσσα
The formation of calcium phosphate deposits upon contact of biological fluids which are supersaturated with respect to a number of calcium phosphate phases, with tissues (e.g. heart valves, artery walls etc) is detrimental to the function of vital organs or of bioprosthetic materials replacing for damaged tissues. Understanding of the mechanisms underlying the formation of the calcium phosphate deposits, adhering tenaciously to functional tissues is of prime importance not only for the amelioration of health but also for the development of efficient and functional biomaterials. Ιn the present work pathological formations of native and bioprosthetic heart valves removed from patients were examined and showed that were consisted of calcium phosphate phases. The calcific deposits formed on native and bioprosthetic heart valves were characterized using solid characterization analytical methods (XRD, FT-IR, SEM) and the results were compared. The morphological examination showed mainly the ...
The formation of calcium phosphate deposits upon contact of biological fluids which are supersaturated with respect to a number of calcium phosphate phases, with tissues (e.g. heart valves, artery walls etc) is detrimental to the function of vital organs or of bioprosthetic materials replacing for damaged tissues. Understanding of the mechanisms underlying the formation of the calcium phosphate deposits, adhering tenaciously to functional tissues is of prime importance not only for the amelioration of health but also for the development of efficient and functional biomaterials. Ιn the present work pathological formations of native and bioprosthetic heart valves removed from patients were examined and showed that were consisted of calcium phosphate phases. The calcific deposits formed on native and bioprosthetic heart valves were characterized using solid characterization analytical methods (XRD, FT-IR, SEM) and the results were compared. The morphological examination showed mainly the presence of apatitic (HAP substituted by carbonate and sodium ions) nano-crystals. Τhe presence of the thermodynamically unstable OCP was, also, identified. The chemical composition of calcific deposits was determined by dissolving an amount of solid in solution of HCl 0.1N. The molar Ca/P ratios in the solids were calculated and found to be Ca/P ~ 1.55 ± 0.25 for bioprosthetic heart valves whereas for native heart valves Ca/P ~ 1.80 ± 0.20. This difference may be attributed to the different maturation of the solids in contact with the respective biological fluids. It seems that the longer the exposure of the solids with solutions containing ions which may replace for calcium in the crystal lattice, the higher the respective Ca/P molar ratio. Another purpose of the present work was the investigation of the heterogeneous nucleation of calcium phosphates on heart valve tissues and on synthetic biomaterials. The mechanistic investigation was done through the correlation of the measured rates of crystal growth as a function of the solution supersaturation and in relation with the substrates on which nucleation took place. The kinetics of calcification of porcine aortic valves (leaflets & walls) and bovine pericardium was investigated in vitro. More specifically, the formation of calcium phosphate deposits was studied at 37°C, pH 7.4 ± 0.1 and ionic strength 0.15 M adjusted with NaCl, from supersaturated solutions. The solution composition was selected to simulate the respective conditions in plasma serum. These conditions were maintained throughout the experiments done in the present work. The kinetic was measured with the method of constant supersaturation. The rate of crystal growth of OCP on heart valve leaflets was higher in comparison with the respective rate on aortic walls and on bovine pericardium. The dependence of the rate of OCP crystal growth on the relative supersaturation was first order, suggesting a surface diffusion controlled process. The crystalline phase formed was characterized by physicοchemical solid characterization methods (XRD, SEM). The mineralogical analysis confirmed the exclusive formation of the transient OCP phase, which was stabilized kinetically because of the maintenance of the solution supersaturation. The morphological examination showed the formation of plate like OCP crystallites (Ca₄H(PO₄)₃∙2.5H₂O, OCP), which hydrolyzed with time yielding prismatic nano-crystals of the thermodynamically more stable hydroxyapatite (Ca₅(PO₄)₃OH, HAP). Moreover, the effect of the formation of deposits on the tissues investigated on their surface potential was investigated, through measurements of the streaming potential of the surfaces with and without deposits. To our knowledge it is the first time this electrokinetic methodology was applied to investigate mineralized tissues. A homemade apparatus was used after the appropriate modifications. A special cell was prepared in which the electrolyte solution was forced to flow over the immobile tissue surface. The surface potentials (zeta potential) of non calcified and calcified tissues were calculated from the electrokinetic measurements. The measurements were conducted over a wide range of concentrations of potassium nitrate (KNO₃) and sodium chloride (NaCl) electrolyte solutions. The increase in ionic strength resulted to the decrease in the zeta potential values of the examined tissues. The potential flow was proportional to the applied pressure and from the graph of potential flow as a function of the applied pressure it was concluded that the surfaces of tissues (pericardium and leaflets) were negatively charged. The presence of calcific deposits resulted to more negative values of zeta potential. The fast growing demand for the development of biomaterials has led to increased interest for the development and study of calcium phosphate and/or calcium carbonate biocements. Biocements have multiple bio-medical applications due to their resorbability and/or bioactivity and biocompatibility properties. Among calcium phosphates, the thermodynamically most stable HAP is the major component of hard tissues of higher mammals and an excellent biocompatible material. Apatitic cements of calcium phosphate were prepared by mixing a- tricalcium phosphate (α-Ca₃(PO₄)₂, a-TCP) with aqueous disodium hydrogen phosphate solution (Na₂HPO₄). The kinetics of crystal growth of HAP from calcium phosphate supersaturated solutions on the apatitic cements was investigated at conditions of constant solution supersaturation. Synthetic HAP crystals were used as reference materials. In addition, experiments were carried out in supersaturated solutions of modified simulated body fluid (m-SBF). The crystal growth rate of HAP was found to be higher in the aqueous solutions than in the m-SBF solution. The kinetics measurements showed that in both cases the crystal growth of HAP was a surface diffusion controlled process. The physicochemical characterization of the cements and the crystal growth phase was examined by solid phase characterization methods (XRD, FT-IR, SEM). The morphological examination showed that the cements consisted mainly of apatite with variable morphology. Small apatitic nano-crystals, larger prismatic crystals (150-300 nm) and leaf-like plates 1-2μm. The effect of another type of inorganic substrates, suggested for use as biomaterials was, also, investigated. These included biocements of mixtures of calcium phosphate and calcium carbonate. The investigation of the kinetics of crystal growth of OCP was carried out at conditions of constant solution supersaturation. The crystal growth was initiated by introduction of different types of inoculating solids. Specifically, biocement A refers to a mixture of vaterite (CaCO₃) and dicalcium dihydrogen phosphate dihydrate (CaHPO₄∙2H₂O) and biocement B to vaterite (CaCO₃), dicalcium dihydrogen phosphate (CaHPO₄∙2H₂O) and 20% of SrCO₃ mixture. Synthetic HAP and OCP crystals were used as reference materials. The presence of carbonate ions showed that they had a significant effect on the rate of crystal growth of OCP. From the growth rate dependence on the relative supersaturation, it was concluded that in all cases the mechanism was the same for all substrates and it was surface diffusion controlled. The morphological examination of the deposits on the OCP seed crystals and on biocements showed the formation of the leaf-like OCP crystallites, while plate-like OCP crystals were formed on the HAP seed crystals. The compatibility between minerals like calcium carbonate and calcium phosphate is an issue of key importance for understanding the behavior and properties of implants and for the design of new materials with desired properties. Thus, it was investigated the possibility of using different polymorphs of calcium carbonate (CaCO₃) as basis for the development of new biomaterials. The kinetics of heterogeneous nucleation of OCP on calcium carbonate substrates was studied at conditions of constant supersaturation. Stable calcium phosphate solutions, supersaturated with respect to OCP and HAP were inoculated with well characterized calcite seed crystals and mixed aragonite and calcite seed crystals. Past the suspension of the seed crystals in the supersaturated calcium phosphate solutions, OCP crystal growth started past induction time, τ, and the initial crystal growth rates per unit area were found to be independent on the amount of the seeds, suggesting that OCP nucleation occurs selectively on the inoculating solids of CaCO₃. The morphological examination of the precipitating phase on both CaCO₃ substrates confirmed the exclusive formation of typical leaf-like OCP crystals, while the thermodynamically stable (HAP) did not grow directly on the substrates neither through the hydrolysis of the unstable OCP. The role of strontium on the kinetics of biological calcification is of particular interest, since it is reported in literature that it enhances the bioactivity and biocompatibility of biomaterials and may have a potential use in the treatment of osteoporosis (e.g. strontium ranelate). The effect of the presence of strontium ions in supersaturated calcium phosphate solutions on the rates of crystal growth of OCP and HAP was investigated at constant solution supersaturation, taking care to account only for the dilution of the strontium in the supersaturated solutions. It was found that Sr²⁺ ions entered the crystal lattice of both HAP and OCP probably substituting for calcium ions. The inhibitory effect of strontium on the crystallization rate of both calcium phosphates was evident, although in the case of OCP inhibition was exhibited a less extent in comparison with HAP. The presence of strontium during the crystal growth of OCP and HAP induced morphology changes and seemed that it retarded the transformation of the unstable OCP into the thermodynamically more stable HAP. Finally, the dissolution kinetics of apatitic deposits from pathological formations on native heart valves removed from patients was investigated in vitro at conditions of constant undersaturation. The dissolution of synthetic HAP was studied as a reference material. The dependence of the dissolution rates on the relative undersaturation of both substrates was second order suggested a surface diffusion controlled process. A marked difference was found however in the rates of dissolution of the two materials tested. The heart valve calcific deposits dissolved with rates 10 fold faster than the corresponding value of the synthetic HAP crystals. Crystallites of smaller size were observed from the morphological examination of both calcific deposits and HAP crystals after dissolution.
περισσότερα