Περίληψη
Τα αυτό-οργανούμενα μονοστρωματικά συστήματα (self-assembled monolayers, SAMs) παρουσιάζουν μεγάλο τεχνολογικό και βιομηχανικό ενδιαφέρον καθώς προσφέρουν μοναδική ευκαιρία για την κατανόηση των διεπιφανειακών φαινομένων και των διεργασιών που σχετίζονται με αυτά. Ο έλεγχος των ιδιοτήτων διαβροχής και λίπανσης της επιφάνειας, η επιλεκτική ρόφηση διαφόρων ειδών μορίων (π.χ., μεγάλων βιολογικών μορίων) για το σχηματισμό επιπρόσθετου μονοστρώματος προς μία προεπιλεγμένη δομή (π.χ., με συγκεκριμένο μοριακό προσανατολισμό), ο σχεδιασμός βιοαισθητήρων αλλά και άλλα παραδείγματα αποτελούν μερικές μόνο από τις πιο διαδεδομένες εφαρμογές των SAMs. Στην παρούσα εργασία εστιάσαμε στο πιο διαδεδομένο σύστημα SAM, αυτό που δημιουργείται κατά τη ρόφηση μορίων αλκανοθειολών σε επιφάνεια χρυσού (RSH/ Au(111)). Πιο συγκεκριμένα διερευνήσαμε τις δομικές ιδιότητες καθώς και τις ιδιότητες διαμόρφωσης του σχηματιζόμενου μονοστρώματος με τη βοήθεια ενός καινούργιου αλγορίθμου Monte Carlo (MC) που σχεδιάσαμε ...
Τα αυτό-οργανούμενα μονοστρωματικά συστήματα (self-assembled monolayers, SAMs) παρουσιάζουν μεγάλο τεχνολογικό και βιομηχανικό ενδιαφέρον καθώς προσφέρουν μοναδική ευκαιρία για την κατανόηση των διεπιφανειακών φαινομένων και των διεργασιών που σχετίζονται με αυτά. Ο έλεγχος των ιδιοτήτων διαβροχής και λίπανσης της επιφάνειας, η επιλεκτική ρόφηση διαφόρων ειδών μορίων (π.χ., μεγάλων βιολογικών μορίων) για το σχηματισμό επιπρόσθετου μονοστρώματος προς μία προεπιλεγμένη δομή (π.χ., με συγκεκριμένο μοριακό προσανατολισμό), ο σχεδιασμός βιοαισθητήρων αλλά και άλλα παραδείγματα αποτελούν μερικές μόνο από τις πιο διαδεδομένες εφαρμογές των SAMs. Στην παρούσα εργασία εστιάσαμε στο πιο διαδεδομένο σύστημα SAM, αυτό που δημιουργείται κατά τη ρόφηση μορίων αλκανοθειολών σε επιφάνεια χρυσού (RSH/ Au(111)). Πιο συγκεκριμένα διερευνήσαμε τις δομικές ιδιότητες καθώς και τις ιδιότητες διαμόρφωσης του σχηματιζόμενου μονοστρώματος με τη βοήθεια ενός καινούργιου αλγορίθμου Monte Carlo (MC) που σχεδιάσαμε στο εργαστήριο, βασισμένου σ’ ένα ιδιαίτερα αποδοτικό μίγμα τόσο απλών όσο και πιο σύνθετων (συχνά μη φυσικών) κινήσεων για τη δειγματοληψία απεικονίσεων του συστήματος. Η καινοτομία του αλγόριθμου MC συνίσταται στο ότι, ανεξάρτητα από την αρχική απεικόνιση του συστήματος, έχει την ικανότητα να οδηγεί αποτελεσματικά όλα τα μόρια της αλκανοθειόλης επάνω στο υπόστρωμα του χρυσού με αποτέλεσμα στο τέλος της προσομοίωσης αυτό να χαρακτηρίζεται από 100% επιφανειακή κάλυψη. Κατά τον τρόπο αυτό παρακάμπτεται ένας σημαντικός περιορισμός των προηγούμενων μεθόδων, οι οποίες ουσιαστικά προ-υπέθεταν την αρχική απεικόνιση του συστήματος (στη βάση πειραματικών δεδομένων). Επιπλέον, λαμβάνοντας υπόψη ένα εκτεταμένο σύνολο αντιγράφων του συστήματος καθένα από τα οποία προσομοιώνεται σε μία διαφορετική τιμή της διαμέτρου van der Waals των ατόμων θείου, σss, και επιχειρώντας ανταλλαγές απεικονίσεων μεταξύ συστημάτων με παρακείμενες τιμές σss, ο νέος αλγόριθμος μας επέτρεψε να προσομοιώσουμε αποτελεσματικά πρότυπα συστήματα R-SH/Au(111) για ένα φάσμα τιμών της παραμέτρου σss από 4.25 A που αντιστοιχεί στο μοριακό μοντέλο των Hautman-Klein [J. Chem. Phys., 1988; 1989] έως 4.97 A που αντιστοιχεί στο μοριακό μοντέλο των Siepmann-McDonald [Langmuir, 1993].
περισσότερα
Περίληψη σε άλλη γλώσσα
Self-assembled monolayers (SAMs) find numerous applications in a variety of fields: in the production of thin films from organic materials, in optics and electronics, as means for controlling the hydrophobic or hydrophilic behavior of a surface, as coatings for the protection of surfaces from corrosion, in molecular recognition, and more recently even as biosensors. In an effort to understand the mechanisms and interactions controlling chain organization and packing in these systems and how these affect their macroscopic properties, the present thesis has focused on the development of a Monte Carlo (MC) algorithm, built around a set of simpler but also more complex (sometimes nonphysical) moves, for the atomistic simulation of the SAM structures formed by the adsorption of short alkanethiol molecules on a Au(111) surface. The innovation of the MC algorithm is that it is capable of efficiently driving all alkanethiol molecules to the Au(111), thereby leading to full surface coverage, ir ...
Self-assembled monolayers (SAMs) find numerous applications in a variety of fields: in the production of thin films from organic materials, in optics and electronics, as means for controlling the hydrophobic or hydrophilic behavior of a surface, as coatings for the protection of surfaces from corrosion, in molecular recognition, and more recently even as biosensors. In an effort to understand the mechanisms and interactions controlling chain organization and packing in these systems and how these affect their macroscopic properties, the present thesis has focused on the development of a Monte Carlo (MC) algorithm, built around a set of simpler but also more complex (sometimes nonphysical) moves, for the atomistic simulation of the SAM structures formed by the adsorption of short alkanethiol molecules on a Au(111) surface. The innovation of the MC algorithm is that it is capable of efficiently driving all alkanethiol molecules to the Au(111), thereby leading to full surface coverage, irrespective of the initial setup of the system. This circumvents a significant limitation of previous methods in which the simulation typically starts from optimally packed structures on the substrate that are close to thermal equilibrium. Further, by considering an extended ensemble of configurations each one of which corresponds to a different value of the sulphursulphur repulsive core potential, σss, and by allowing for configurations to swap between different σss values, the new algorithm can adequately simulate model RSH/ Au(111) systems for values of σss ranging from 4.25 A corresponding to the Hautman-Klein molecular model [J. Chem. Phys., 1988; 1989] to 4.97 A corresponding to the Siepmann-McDonald model [Langmuir, 1993]. A thorough investigation of the variation of molecular organization and ordering on the Au(111) substrate with chain length is presented. In a parallel study, the MC method was extended to alkanethiol SAM systems on different metal surfaces. This has allowed us to perform a detailed investigation of the substrate’s effect on the structure and conformation of the above systems through atomistic MC simulations based on a first-principles density functional modeling of the sulphur-metal interaction. Ab initio calculations on a methanethiol molecule adsorbed on gold, silver and platinum surfaces were conducted and the data obtained were used to develop an accurate classical force field which served as an input to the new MC algorithm. Emphasis was given primarily to the study of the effect of the substrate on the structural properties of the simulated R-SH SAM systems, like molecular orientation, molecular conformation, and statistics of gauche defects.
περισσότερα